Ambiguity in the definition of entropyHow are possible microstates discerned in Gibb's entropy formula?Statistical interpretation of EntropyEntropy as an arrow of timeWhat precisely does the 2nd law of thermo state, considering that entropy depends on how we define macrostate?The statistical interpretation of EntropyWhat is the cause for the inclusion of 'thermal equilibrium' in the statement of Ergodic hypothesis?Do the results of statistical mechanics depend upon the choice of macrostates?Entropy definition, additivity, laws in different ensemblesDefinition of entropy and other StatMech variablesWhat is the definition of entropy in microcanonical ensemble?
Why was the shrink from 8″ made only to 5.25″ and not smaller (4″ or less)
Why is the sentence "Das ist eine Nase" correct?
What is required to make GPS signals available indoors?
What reasons are there for a Capitalist to oppose a 100% inheritance tax?
How can I prove that a state of equilibrium is unstable?
Finding the reason behind the value of the integral.
Do creatures with a listed speed of "0 ft., fly 30 ft. (hover)" ever touch the ground?
How badly should I try to prevent a user from XSSing themselves?
Notepad++ delete until colon for every line with replace all
If a warlock makes a Dancing Sword their pact weapon, is there a way to prevent it from disappearing if it's farther away for more than a minute?
Could the museum Saturn V's be refitted for one more flight?
What Exploit Are These User Agents Trying to Use?
Did 'Cinema Songs' exist during Hiranyakshipu's time?
Can a virus destroy the BIOS of a modern computer?
How do conventional missiles fly?
How to remove border from elements in the last row?
In the UK, is it possible to get a referendum by a court decision?
How to compactly explain secondary and tertiary characters without resorting to stereotypes?
Convert seconds to minutes
Unlock My Phone! February 2018
How obscure is the use of 令 in 令和?
How to travel to Japan while expressing milk?
Processor speed limited at 0.4 Ghz
Can someone clarify Hamming's notion of important problems in relation to modern academia?
Ambiguity in the definition of entropy
How are possible microstates discerned in Gibb's entropy formula?Statistical interpretation of EntropyEntropy as an arrow of timeWhat precisely does the 2nd law of thermo state, considering that entropy depends on how we define macrostate?The statistical interpretation of EntropyWhat is the cause for the inclusion of 'thermal equilibrium' in the statement of Ergodic hypothesis?Do the results of statistical mechanics depend upon the choice of macrostates?Entropy definition, additivity, laws in different ensemblesDefinition of entropy and other StatMech variablesWhat is the definition of entropy in microcanonical ensemble?
$begingroup$
The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?
statistical-mechanics entropy
$endgroup$
add a comment |
$begingroup$
The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?
statistical-mechanics entropy
$endgroup$
add a comment |
$begingroup$
The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?
statistical-mechanics entropy
$endgroup$
The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?
statistical-mechanics entropy
statistical-mechanics entropy
edited 21 mins ago
PiKindOfGuy
asked 1 hour ago
PiKindOfGuyPiKindOfGuy
596622
596622
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.
Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.
$endgroup$
add a comment |
$begingroup$
Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470202%2fambiguity-in-the-definition-of-entropy%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.
Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.
$endgroup$
add a comment |
$begingroup$
Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.
Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.
$endgroup$
add a comment |
$begingroup$
Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.
Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.
$endgroup$
Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.
Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.
answered 32 mins ago
AcccumulationAcccumulation
2,754312
2,754312
add a comment |
add a comment |
$begingroup$
Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.
$endgroup$
add a comment |
$begingroup$
Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.
$endgroup$
add a comment |
$begingroup$
Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.
$endgroup$
Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.
answered 31 mins ago
CR DrostCR Drost
22.4k11961
22.4k11961
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470202%2fambiguity-in-the-definition-of-entropy%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown