Relation between independence and correlation of uniform random variablesCorrelations with a linear combination means correlation with individual variables?Geometric mean of uniform variablesHow to Test Independence of Poisson Variables?If $X$ and $Y$ are normally distributed random variables, what kind of distribution their sum follows?Distribution of X-U(0,1) conditioned on sigma algebra of Y/X, where is Y is U(0,1)?Is there a parametric joint distribution such that $X$ and $Y$ are both uniform and $mathbbE[Y ;|; X]$ is linear?Are two Random Variables Independent if their support has a dependency?Correlation of the sigmoid function of normal random varaiblesIntuitive reason why jointly normal and uncorrelated imply independenceConditional maximum likelihood of AR(1) UNIFORM PROCESS

What is the plural TO / OF something

Deletion of copy-ctor & copy-assignment - public, private or protected?

How to get the n-th line after a grepped one?

How could an airship be repaired midflight?

Help rendering a complicated sum/product formula

Do I need to consider instance restrictions when showing a language is in P?

Light propagating through a sound wave

My friend is being a hypocrite

Violin - Can double stops be played when the strings are not next to each other?

Can you move over difficult terrain with only 5 feet of movement?

Optimising a list searching algorithm

What is the term when voters “dishonestly” choose something that they do not want to choose?

HP P840 HDD RAID 5 many strange drive failures

What exactly term 'companion plants' means?

The average age of first marriage in Russia

Suggestions on how to spend Shaabath (constructively) alone

What does Jesus mean regarding "Raca," and "you fool?" - is he contrasting them?

What does Deadpool mean by "left the house in that shirt"?

Four married couples attend a party. Each person shakes hands with every other person, except their own spouse, exactly once. How many handshakes?

What (if any) is the reason to buy in small local stores?

Print last inputted byte

Fewest number of steps to reach 200 using special calculator

Variable completely messes up echoed string

Are dual Irish/British citizens bound by the 90/180 day rule when travelling in the EU after Brexit?



Relation between independence and correlation of uniform random variables


Correlations with a linear combination means correlation with individual variables?Geometric mean of uniform variablesHow to Test Independence of Poisson Variables?If $X$ and $Y$ are normally distributed random variables, what kind of distribution their sum follows?Distribution of X-U(0,1) conditioned on sigma algebra of Y/X, where is Y is U(0,1)?Is there a parametric joint distribution such that $X$ and $Y$ are both uniform and $mathbbE[Y ;|; X]$ is linear?Are two Random Variables Independent if their support has a dependency?Correlation of the sigmoid function of normal random varaiblesIntuitive reason why jointly normal and uncorrelated imply independenceConditional maximum likelihood of AR(1) UNIFORM PROCESS













1












$begingroup$


My question is fairly simple: let $X$ and $Y$ be two uncorrelated uniform random variables on $[-1,1]$. Are they independent?



I was under the impression that two random, uncorrelated variables are only necessarily independent if their joint distribution is normal, however I can't come up with a counterexample to disprove the claim I ask about. Either a counterexample or a proof would be greatly appreciated.










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    My question is fairly simple: let $X$ and $Y$ be two uncorrelated uniform random variables on $[-1,1]$. Are they independent?



    I was under the impression that two random, uncorrelated variables are only necessarily independent if their joint distribution is normal, however I can't come up with a counterexample to disprove the claim I ask about. Either a counterexample or a proof would be greatly appreciated.










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      My question is fairly simple: let $X$ and $Y$ be two uncorrelated uniform random variables on $[-1,1]$. Are they independent?



      I was under the impression that two random, uncorrelated variables are only necessarily independent if their joint distribution is normal, however I can't come up with a counterexample to disprove the claim I ask about. Either a counterexample or a proof would be greatly appreciated.










      share|cite|improve this question









      $endgroup$




      My question is fairly simple: let $X$ and $Y$ be two uncorrelated uniform random variables on $[-1,1]$. Are they independent?



      I was under the impression that two random, uncorrelated variables are only necessarily independent if their joint distribution is normal, however I can't come up with a counterexample to disprove the claim I ask about. Either a counterexample or a proof would be greatly appreciated.







      correlation independence uniform






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      PeiffapPeiffap

      153




      153




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            1 hour ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            1 hour ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "65"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398050%2frelation-between-independence-and-correlation-of-uniform-random-variables%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            1 hour ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            1 hour ago















          5












          $begingroup$

          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            1 hour ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            1 hour ago













          5












          5








          5





          $begingroup$

          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)






          share|cite|improve this answer











          $endgroup$



          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 40 mins ago

























          answered 1 hour ago









          Glen_bGlen_b

          213k22413763




          213k22413763











          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            1 hour ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            1 hour ago
















          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            1 hour ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            1 hour ago















          $begingroup$
          Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
          $endgroup$
          – Peiffap
          1 hour ago





          $begingroup$
          Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
          $endgroup$
          – Peiffap
          1 hour ago













          $begingroup$
          Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
          $endgroup$
          – Glen_b
          1 hour ago





          $begingroup$
          Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
          $endgroup$
          – Glen_b
          1 hour ago













          $begingroup$
          They make it visually clearer, yes. Thank you, again.
          $endgroup$
          – Peiffap
          1 hour ago




          $begingroup$
          They make it visually clearer, yes. Thank you, again.
          $endgroup$
          – Peiffap
          1 hour ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Cross Validated!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398050%2frelation-between-independence-and-correlation-of-uniform-random-variables%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Dapidodigma demeter Subspecies | Notae | Tabula navigationisDapidodigmaAfrotropical Butterflies: Lycaenidae - Subtribe IolainaAmplifica

          Constantinus Vanšenkin Nexus externi | Tabula navigationisБольшая российская энциклопедияAmplifica

          Gaius Norbanus Flaccus (consul 38 a.C.n.) Index De gente | De cursu honorum | Notae | Fontes | Si vis plura legere | Tabula navigationisHic legere potes