Is a bound state a stationary state?It appears that stationary states aren't so stationaryBound states, scattering states and infinite potentialsOperator in Hilbert space of a spinHelp needed to understand “On the reality of the quantum state”Trace of density matrix for mixed stateUsing the Heisenberg Uncertainty Relation to Estimate Ground State EnergiesTime Derivative of Expectation Value - Stationary StateParticle in a Box, Expansion of Energy StateStates in QM and in the algebraic approachInfinite Series vs Integral Representation of State Vectors in QM?
If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?
Why did the HMS Bounty go back to a time when whales are already rare?
The IT department bottlenecks progress. How should I handle this?
Travelling outside the UK without a passport
On a tidally locked planet, would time be quantized?
What is Cash Advance APR?
Fear of getting stuck on one programming language / technology that is not used in my country
How to implement a feedback to keep the DC gain at zero for this conceptual passive filter?
How much character growth crosses the line into breaking the character
What was this official D&D 3.5e Lovecraft-flavored rulebook?
Argument list too long when zipping large list of certain files in a folder
How do I color the graph in datavisualization?
Yosemite Fire Rings - What to Expect?
Removing files under particular conditions (number of files, file age)
Strong empirical falsification of quantum mechanics based on vacuum energy density
A social experiment. What is the worst that can happen?
Melting point of aspirin, contradicting sources
Where did Heinlein say "Once you get to Earth orbit, you're halfway to anywhere in the Solar System"?
Should I stop contributing to retirement accounts?
How to explain what's wrong with this application of the chain rule?
What is this called? Old film camera viewer?
Problem with TransformedDistribution
Why should universal income be universal?
Electoral considerations aside, what are potential benefits, for the US, of policy changes proposed by the tweet recognizing Golan annexation?
Is a bound state a stationary state?
It appears that stationary states aren't so stationaryBound states, scattering states and infinite potentialsOperator in Hilbert space of a spinHelp needed to understand “On the reality of the quantum state”Trace of density matrix for mixed stateUsing the Heisenberg Uncertainty Relation to Estimate Ground State EnergiesTime Derivative of Expectation Value - Stationary StateParticle in a Box, Expansion of Energy StateStates in QM and in the algebraic approachInfinite Series vs Integral Representation of State Vectors in QM?
$begingroup$
In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:
Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.
The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?
quantum-mechanics hilbert-space terminology definition quantum-states
$endgroup$
add a comment |
$begingroup$
In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:
Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.
The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?
quantum-mechanics hilbert-space terminology definition quantum-states
$endgroup$
2
$begingroup$
I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
$endgroup$
– DanielSank
3 hours ago
add a comment |
$begingroup$
In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:
Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.
The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?
quantum-mechanics hilbert-space terminology definition quantum-states
$endgroup$
In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:
Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.
The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?
quantum-mechanics hilbert-space terminology definition quantum-states
quantum-mechanics hilbert-space terminology definition quantum-states
edited 3 hours ago
Qmechanic♦
106k121961226
106k121961226
asked 3 hours ago
J-JJ-J
586
586
2
$begingroup$
I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
$endgroup$
– DanielSank
3 hours ago
add a comment |
2
$begingroup$
I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
$endgroup$
– DanielSank
3 hours ago
2
2
$begingroup$
I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
$endgroup$
– DanielSank
3 hours ago
$begingroup$
I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
$endgroup$
– DanielSank
3 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.
Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with
Let us now ... discuss the fact that the lowest energy is not zero...
(emphasis added by me), and the following paragraph ends with
The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.
So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes
Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.
Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468307%2fis-a-bound-state-a-stationary-state%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.
Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with
Let us now ... discuss the fact that the lowest energy is not zero...
(emphasis added by me), and the following paragraph ends with
The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.
So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes
Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.
Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.
$endgroup$
add a comment |
$begingroup$
I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.
Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with
Let us now ... discuss the fact that the lowest energy is not zero...
(emphasis added by me), and the following paragraph ends with
The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.
So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes
Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.
Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.
$endgroup$
add a comment |
$begingroup$
I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.
Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with
Let us now ... discuss the fact that the lowest energy is not zero...
(emphasis added by me), and the following paragraph ends with
The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.
So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes
Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.
Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.
$endgroup$
I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.
Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with
Let us now ... discuss the fact that the lowest energy is not zero...
(emphasis added by me), and the following paragraph ends with
The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.
So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes
Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.
Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.
answered 3 hours ago
Chiral AnomalyChiral Anomaly
12.4k21541
12.4k21541
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468307%2fis-a-bound-state-a-stationary-state%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
$endgroup$
– DanielSank
3 hours ago