Shortcut for value of this indefinite integral?How can this indefinite integral be solved without partial fractions?Indefinite integral question.Question about indefinite integral with square rootIndefinite integral of $fracarctan xx^2+1$Indefinite integral of a rational function problem…Need help in indefinite integral eliminationWeird indefinite integral situationHow to find the value of this indefinite integral?Indefinite integral with polynomial function factorizingHow do I evaluate this indefinite integral?

Shortcut for value of this indefinite integral?

How to Reset Passwords on Multiple Websites Easily?

Implement the Thanos sorting algorithm

Opposite of a diet

What can we do to stop prior company from asking us questions?

How to safely derail a train during transit?

How did Arya survive the stabbing?

How can I kill an app using Terminal?

Avoiding estate tax by giving multiple gifts

System.debug(JSON.Serialize(o)) Not longer shows full string

Proof of work - lottery approach

Pre-amplifier input protection

Why does indent disappear in lists?

How do we know the LHC results are robust?

Different result between scanning in Epson's "color negative film" mode and scanning in positive -> invert curve in post?

Tiptoe or tiphoof? Adjusting words to better fit fantasy races

Increase performance creating Mandelbrot set in python

Is exact Kanji stroke length important?

Why not increase contact surface when reentering the atmosphere?

How do I go from 300 unfinished/half written blog posts, to published posts?

What does "I’d sit this one out, Cap," imply or mean in the context?

Why Were Madagascar and New Zealand Discovered So Late?

What is the best translation for "slot" in the context of multiplayer video games?

Arithmetic mean geometric mean inequality unclear



Shortcut for value of this indefinite integral?


How can this indefinite integral be solved without partial fractions?Indefinite integral question.Question about indefinite integral with square rootIndefinite integral of $fracarctan xx^2+1$Indefinite integral of a rational function problem…Need help in indefinite integral eliminationWeird indefinite integral situationHow to find the value of this indefinite integral?Indefinite integral with polynomial function factorizingHow do I evaluate this indefinite integral?













3












$begingroup$


If $$f(x) = int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?



This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to find this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
    $endgroup$
    – Robert Israel
    3 hours ago










  • $begingroup$
    @RobertIsrael. I was typing almost the same ! Cheers
    $endgroup$
    – Claude Leibovici
    3 hours ago










  • $begingroup$
    @RobertIsrael there must be a printing error in my book then.
    $endgroup$
    – Hema
    3 hours ago










  • $begingroup$
    What is JEE...?
    $endgroup$
    – amsmath
    3 hours ago










  • $begingroup$
    @amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
    $endgroup$
    – Deepak
    2 hours ago















3












$begingroup$


If $$f(x) = int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?



This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to find this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
    $endgroup$
    – Robert Israel
    3 hours ago










  • $begingroup$
    @RobertIsrael. I was typing almost the same ! Cheers
    $endgroup$
    – Claude Leibovici
    3 hours ago










  • $begingroup$
    @RobertIsrael there must be a printing error in my book then.
    $endgroup$
    – Hema
    3 hours ago










  • $begingroup$
    What is JEE...?
    $endgroup$
    – amsmath
    3 hours ago










  • $begingroup$
    @amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
    $endgroup$
    – Deepak
    2 hours ago













3












3








3


1



$begingroup$


If $$f(x) = int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?



This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to find this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $










share|cite|improve this question











$endgroup$




If $$f(x) = int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?



This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to find this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $







calculus integration indefinite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 48 mins ago







Hema

















asked 3 hours ago









HemaHema

6531213




6531213







  • 2




    $begingroup$
    Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
    $endgroup$
    – Robert Israel
    3 hours ago










  • $begingroup$
    @RobertIsrael. I was typing almost the same ! Cheers
    $endgroup$
    – Claude Leibovici
    3 hours ago










  • $begingroup$
    @RobertIsrael there must be a printing error in my book then.
    $endgroup$
    – Hema
    3 hours ago










  • $begingroup$
    What is JEE...?
    $endgroup$
    – amsmath
    3 hours ago










  • $begingroup$
    @amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
    $endgroup$
    – Deepak
    2 hours ago












  • 2




    $begingroup$
    Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
    $endgroup$
    – Robert Israel
    3 hours ago










  • $begingroup$
    @RobertIsrael. I was typing almost the same ! Cheers
    $endgroup$
    – Claude Leibovici
    3 hours ago










  • $begingroup$
    @RobertIsrael there must be a printing error in my book then.
    $endgroup$
    – Hema
    3 hours ago










  • $begingroup$
    What is JEE...?
    $endgroup$
    – amsmath
    3 hours ago










  • $begingroup$
    @amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
    $endgroup$
    – Deepak
    2 hours ago







2




2




$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
3 hours ago




$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
3 hours ago












$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
3 hours ago




$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
3 hours ago












$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
3 hours ago




$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
3 hours ago












$begingroup$
What is JEE...?
$endgroup$
– amsmath
3 hours ago




$begingroup$
What is JEE...?
$endgroup$
– amsmath
3 hours ago












$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
2 hours ago




$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
2 hours ago










2 Answers
2






active

oldest

votes


















4












$begingroup$

With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$



As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.






share|cite|improve this answer









$endgroup$




















    3












    $begingroup$

    Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$



    Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
    $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$



    Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$



    Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
    So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$






    share|cite|improve this answer









    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165393%2fshortcut-for-value-of-this-indefinite-integral%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
      e^x(g(x) - g'(x)) - (g(0) - g'(0))$$



      As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.






      share|cite|improve this answer









      $endgroup$

















        4












        $begingroup$

        With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
        e^x(g(x) - g'(x)) - (g(0) - g'(0))$$



        As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.






        share|cite|improve this answer









        $endgroup$















          4












          4








          4





          $begingroup$

          With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
          e^x(g(x) - g'(x)) - (g(0) - g'(0))$$



          As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.






          share|cite|improve this answer









          $endgroup$



          With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
          e^x(g(x) - g'(x)) - (g(0) - g'(0))$$



          As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          Catalin ZaraCatalin Zara

          3,807514




          3,807514





















              3












              $begingroup$

              Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$



              Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
              $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$



              Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$



              Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
              So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$






              share|cite|improve this answer









              $endgroup$

















                3












                $begingroup$

                Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$



                Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
                $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$



                Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$



                Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
                So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$






                share|cite|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$



                  Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
                  $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$



                  Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$



                  Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
                  So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$






                  share|cite|improve this answer









                  $endgroup$



                  Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$



                  Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
                  $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$



                  Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$



                  Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
                  So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 hours ago









                  Thomas ShelbyThomas Shelby

                  4,4892726




                  4,4892726



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165393%2fshortcut-for-value-of-this-indefinite-integral%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Dapidodigma demeter Subspecies | Notae | Tabula navigationisDapidodigmaAfrotropical Butterflies: Lycaenidae - Subtribe IolainaAmplifica

                      Constantinus Vanšenkin Nexus externi | Tabula navigationisБольшая российская энциклопедияAmplifica

                      Gaius Norbanus Flaccus (consul 38 a.C.n.) Index De gente | De cursu honorum | Notae | Fontes | Si vis plura legere | Tabula navigationisHic legere potes