calculus parametric curve length The Next CEO of Stack OverflowFind the length of the parametric curve (Difficult)Parametric Curve Tangent EquationsParametric curve parametriced by lengthCompute the length of a parametric curve.Arc Length parametric curveSampling a curve (parametric)Arc Length with Parametric EquationsFind the length of the parametric curveTransforming quadratic parametric curve to implicit formLength of a parametric curve formula: What does the integral represent?
Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?
Which tube will fit a -(700 x 25c) wheel?
How to transpose the 1st and -1th levels of arbitrarily nested array?
Sending manuscript to multiple publishers
Why am I allowed to create multiple unique pointers from a single object?
Are there any unintended negative consequences to allowing PCs to gain multiple levels at once in a short milestone-XP game?
Different harmonic changes implied by a simple descending scale
Preparing Indesign booklet with .psd graphics for print
Would a galaxy be visible from outside, but nearby?
Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?
Interfacing a button to MCU (and PC) with 50m long cable
Why didn't Khan get resurrected in the Genesis Explosion?
Why does standard notation not preserve intervals (visually)
Is micro rebar a better way to reinforce concrete than rebar?
What happens if you roll doubles 3 times then land on "Go to jail?"
I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin
What flight has the highest ratio of time difference to flight time?
How to add tiny 0.5A 120V load to very remote split phase 240v 3 wire well house
Can we say or write : "No, it'sn't"?
Why do airplanes bank sharply to the right after air-to-air refueling?
Unreliable Magic - Is it worth it?
How do we know the LHC results are robust?
If the heap is initialized for security, then why is the stack uninitialized?
Non-deterministic sum of floats
calculus parametric curve length
The Next CEO of Stack OverflowFind the length of the parametric curve (Difficult)Parametric Curve Tangent EquationsParametric curve parametriced by lengthCompute the length of a parametric curve.Arc Length parametric curveSampling a curve (parametric)Arc Length with Parametric EquationsFind the length of the parametric curveTransforming quadratic parametric curve to implicit formLength of a parametric curve formula: What does the integral represent?
$begingroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$ , $y = 4 + 3 t^frac92$ , $0 leq t leq 2$.
I used integration and after some point I got lost :( Can anyone show me the steps?
calculus parametric
$endgroup$
add a comment |
$begingroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$ , $y = 4 + 3 t^frac92$ , $0 leq t leq 2$.
I used integration and after some point I got lost :( Can anyone show me the steps?
calculus parametric
$endgroup$
$begingroup$
Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
$endgroup$
– Dr. Sonnhard Graubner
4 hours ago
add a comment |
$begingroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$ , $y = 4 + 3 t^frac92$ , $0 leq t leq 2$.
I used integration and after some point I got lost :( Can anyone show me the steps?
calculus parametric
$endgroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$ , $y = 4 + 3 t^frac92$ , $0 leq t leq 2$.
I used integration and after some point I got lost :( Can anyone show me the steps?
calculus parametric
calculus parametric
edited 4 hours ago
Matt A Pelto
2,667621
2,667621
asked 4 hours ago
McAMcA
224
224
$begingroup$
Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
$endgroup$
– Dr. Sonnhard Graubner
4 hours ago
add a comment |
$begingroup$
Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
$endgroup$
– Dr. Sonnhard Graubner
4 hours ago
$begingroup$
Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
$endgroup$
– Dr. Sonnhard Graubner
4 hours ago
$begingroup$
Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
$endgroup$
– Dr. Sonnhard Graubner
4 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac27t^2,sqrtt^3+12 dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrtv dv = 78.
$$
New contributor
$endgroup$
add a comment |
$begingroup$
beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.
$endgroup$
add a comment |
$begingroup$
You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
$$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167507%2fcalculus-parametric-curve-length%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac27t^2,sqrtt^3+12 dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrtv dv = 78.
$$
New contributor
$endgroup$
add a comment |
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac27t^2,sqrtt^3+12 dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrtv dv = 78.
$$
New contributor
$endgroup$
add a comment |
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac27t^2,sqrtt^3+12 dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrtv dv = 78.
$$
New contributor
$endgroup$
Apply the formula for arc length, we get
$$
int_0^2 frac27t^2,sqrtt^3+12 dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrtv dv = 78.
$$
New contributor
New contributor
answered 4 hours ago
EagleToLearnEagleToLearn
233
233
New contributor
New contributor
add a comment |
add a comment |
$begingroup$
beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.
$endgroup$
add a comment |
$begingroup$
beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.
$endgroup$
add a comment |
$begingroup$
beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.
$endgroup$
beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.
edited 3 hours ago
answered 4 hours ago
Matt A PeltoMatt A Pelto
2,667621
2,667621
add a comment |
add a comment |
$begingroup$
You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
$$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$
$endgroup$
add a comment |
$begingroup$
You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
$$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$
$endgroup$
add a comment |
$begingroup$
You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
$$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$
$endgroup$
You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
$$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$
answered 4 hours ago
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
78.2k42867
78.2k42867
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167507%2fcalculus-parametric-curve-length%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
$endgroup$
– Dr. Sonnhard Graubner
4 hours ago