Geometry problem - areas of triangles (contest math) The Next CEO of Stack OverflowContest Math GeometryMath contest geometry probabilitymath contest geometry proof problemMath contest geometry proof problem 2Contest Math Possible Triangles3D Geometry Contest Math Problemmath contest geometry problemInscribed and circumscribed non-regular polygonsSynthetic geometry with/without measurement vs analytic geometryRing Theoretical Method of Solving a Math Olympiad Problem

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?

What connection does MS Office have to Netscape Navigator?

Rotate a column

Return the Closest Prime Number

Won the lottery - how do I keep the money?

Complex fractions

Is there a way to save my career from absolute disaster?

Is micro rebar a better way to reinforce concrete than rebar?

Why does standard notation not preserve intervals (visually)

What happens if you roll doubles 3 times then land on "Go to jail?"

What's the best way to handle refactoring a big file?

Preparing Indesign booklet with .psd graphics for print

Which tube will fit a -(700 x 25c) wheel?

Does it take more energy to get to Venus or to Mars?

How do I make a variable always equal to the result of some calculations?

What can we do to stop prior company from asking us questions?

If the heap is zero-initialized for security, then why is the stack merely uninitialized?

Why do remote companies require working in the US?

How do I transpose the first and deepest levels of an arbitrarily nested array?

How does the Z80 determine which peripheral sent an interrupt?

Geometry problem - areas of triangles (contest math)

Is it professional to write unrelated content in an almost-empty email?

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

Why do we use the plural of movies in this phrase "We went to the movies last night."?



Geometry problem - areas of triangles (contest math)



The Next CEO of Stack OverflowContest Math GeometryMath contest geometry probabilitymath contest geometry proof problemMath contest geometry proof problem 2Contest Math Possible Triangles3D Geometry Contest Math Problemmath contest geometry problemInscribed and circumscribed non-regular polygonsSynthetic geometry with/without measurement vs analytic geometryRing Theoretical Method of Solving a Math Olympiad Problem










1












$begingroup$


This problem is from 2019 Math Kangaroo competition for 9th-10th graders that took place last week, problem #29.
enter image description here



I was able to solve it using coordinate geometry, both triangles have the same area. However, I do not expect 9th graders to know this method. Is there a simpler solution that I am not seeing?










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    This problem is from 2019 Math Kangaroo competition for 9th-10th graders that took place last week, problem #29.
    enter image description here



    I was able to solve it using coordinate geometry, both triangles have the same area. However, I do not expect 9th graders to know this method. Is there a simpler solution that I am not seeing?










    share|cite|improve this question











    $endgroup$














      1












      1








      1


      1



      $begingroup$


      This problem is from 2019 Math Kangaroo competition for 9th-10th graders that took place last week, problem #29.
      enter image description here



      I was able to solve it using coordinate geometry, both triangles have the same area. However, I do not expect 9th graders to know this method. Is there a simpler solution that I am not seeing?










      share|cite|improve this question











      $endgroup$




      This problem is from 2019 Math Kangaroo competition for 9th-10th graders that took place last week, problem #29.
      enter image description here



      I was able to solve it using coordinate geometry, both triangles have the same area. However, I do not expect 9th graders to know this method. Is there a simpler solution that I am not seeing?







      contest-math euclidean-geometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 3 hours ago







      Vasya

















      asked 4 hours ago









      VasyaVasya

      4,1351618




      4,1351618




















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          Since $D$ is the midpoint of $BC$, $A_triangle ACD=A_triangle ABD=frac12S$.



          Since $AP=2AB$ and $AQ=3AD$, $A_triangle APQ$ is $2times 3=6$ times $A_triangle ABD$.
          Similarly $A_triangle AQR$ and $A_triangle APR$. So $A_triangle PQR = A_triangle APQ+A_triangle AQR - A_triangle APR$, giving the answer.



          All this is just the ratio of areas of triangle with same base and ratio of height (or vice versa), which a year 9 student should already know.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167832%2fgeometry-problem-areas-of-triangles-contest-math%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            Since $D$ is the midpoint of $BC$, $A_triangle ACD=A_triangle ABD=frac12S$.



            Since $AP=2AB$ and $AQ=3AD$, $A_triangle APQ$ is $2times 3=6$ times $A_triangle ABD$.
            Similarly $A_triangle AQR$ and $A_triangle APR$. So $A_triangle PQR = A_triangle APQ+A_triangle AQR - A_triangle APR$, giving the answer.



            All this is just the ratio of areas of triangle with same base and ratio of height (or vice versa), which a year 9 student should already know.






            share|cite|improve this answer









            $endgroup$

















              4












              $begingroup$

              Since $D$ is the midpoint of $BC$, $A_triangle ACD=A_triangle ABD=frac12S$.



              Since $AP=2AB$ and $AQ=3AD$, $A_triangle APQ$ is $2times 3=6$ times $A_triangle ABD$.
              Similarly $A_triangle AQR$ and $A_triangle APR$. So $A_triangle PQR = A_triangle APQ+A_triangle AQR - A_triangle APR$, giving the answer.



              All this is just the ratio of areas of triangle with same base and ratio of height (or vice versa), which a year 9 student should already know.






              share|cite|improve this answer









              $endgroup$















                4












                4








                4





                $begingroup$

                Since $D$ is the midpoint of $BC$, $A_triangle ACD=A_triangle ABD=frac12S$.



                Since $AP=2AB$ and $AQ=3AD$, $A_triangle APQ$ is $2times 3=6$ times $A_triangle ABD$.
                Similarly $A_triangle AQR$ and $A_triangle APR$. So $A_triangle PQR = A_triangle APQ+A_triangle AQR - A_triangle APR$, giving the answer.



                All this is just the ratio of areas of triangle with same base and ratio of height (or vice versa), which a year 9 student should already know.






                share|cite|improve this answer









                $endgroup$



                Since $D$ is the midpoint of $BC$, $A_triangle ACD=A_triangle ABD=frac12S$.



                Since $AP=2AB$ and $AQ=3AD$, $A_triangle APQ$ is $2times 3=6$ times $A_triangle ABD$.
                Similarly $A_triangle AQR$ and $A_triangle APR$. So $A_triangle PQR = A_triangle APQ+A_triangle AQR - A_triangle APR$, giving the answer.



                All this is just the ratio of areas of triangle with same base and ratio of height (or vice versa), which a year 9 student should already know.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 4 hours ago









                user10354138user10354138

                7,4722925




                7,4722925



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167832%2fgeometry-problem-areas-of-triangles-contest-math%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Dapidodigma demeter Subspecies | Notae | Tabula navigationisDapidodigmaAfrotropical Butterflies: Lycaenidae - Subtribe IolainaAmplifica

                    Constantinus Vanšenkin Nexus externi | Tabula navigationisБольшая российская энциклопедияAmplifica

                    Gaius Norbanus Flaccus (consul 38 a.C.n.) Index De gente | De cursu honorum | Notae | Fontes | Si vis plura legere | Tabula navigationisHic legere potes