How to invert MapIndexed on a ragged structure? How to construct a tree from rules? The Next CEO of Stack OverflowFrom a list to a list of rulesHow to partition a list according to a nested table structure?Visualize a tree structure using TreeGraphExplore a nested listDrop selection of columns from a ragged arrayHow to check if two nested lists have the same structure?Rule-based branching construction of listsHow to convert a tree in a list?Replacement Rule for “flattening” list whilst adding attributesRagged Transpose

What benefits would be gained by using human laborers instead of drones in deep sea mining?

What was the first Unix version to run on a microcomputer?

Between two walls

Contours of a clandestine nature

Why does standard notation not preserve intervals (visually)

Limits on contract work without pre-agreed price/contract (UK)

What exact does MIB represent in SNMP? How is it different from OID?

What happened in Rome, when the western empire "fell"?

Why do we use the plural of movies in this phrase "We went to the movies last night."?

Won the lottery - how do I keep the money?

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

How to invert MapIndexed on a ragged structure? How to construct a tree from rules?

How to solve a differential equation with a term to a power?

Is it ever safe to open a suspicious html file (e.g. email attachment)?

How to add tiny 0.5A 120V load to very remote split phase 240v 3 wire well house

If/When UK leaves the EU, can a future goverment conduct a referendum to join the EU?

Make solar eclipses exceedingly rare, but still have new moons

What connection does MS Office have to Netscape Navigator?

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?

Inappropriate reference requests from Journal reviewers

Unreliable Magic - Is it worth it?

If a black hole is created from light, can this black hole then move at speed of light?

What does "Its cash flow is deeply negative" mean?



How to invert MapIndexed on a ragged structure? How to construct a tree from rules?



The Next CEO of Stack OverflowFrom a list to a list of rulesHow to partition a list according to a nested table structure?Visualize a tree structure using TreeGraphExplore a nested listDrop selection of columns from a ragged arrayHow to check if two nested lists have the same structure?Rule-based branching construction of listsHow to convert a tree in a list?Replacement Rule for “flattening” list whilst adding attributesRagged Transpose










4












$begingroup$


I have an arbitrary ragged nested list-of-lists (a tree) like



A = a, b, c, d, e, f, g, h, i, j, k, l, m, n;


Its structure is given by the rules



B = Flatten[MapIndexed[#2 -> #1 &, A, -1]]



1, 1 -> a, 1, 2 -> b, 2, 1 -> c, 2, 2 -> d, 3, 1, 1, 1 -> e, 3, 1, 1, 2 -> f, 3, 1, 1, 3 -> g, 3, 1, 1, 4 -> h, 3, 1, 1, 5 -> i, 3, 1, 2, 1 -> j, 3, 1, 2, 2 -> k, 3, 1, 2, 3 -> l, 3, 2 -> m, 4 -> n




How can I invert this operation? How can I construct A solely from the information given in B?










share|improve this question









$endgroup$
















    4












    $begingroup$


    I have an arbitrary ragged nested list-of-lists (a tree) like



    A = a, b, c, d, e, f, g, h, i, j, k, l, m, n;


    Its structure is given by the rules



    B = Flatten[MapIndexed[#2 -> #1 &, A, -1]]



    1, 1 -> a, 1, 2 -> b, 2, 1 -> c, 2, 2 -> d, 3, 1, 1, 1 -> e, 3, 1, 1, 2 -> f, 3, 1, 1, 3 -> g, 3, 1, 1, 4 -> h, 3, 1, 1, 5 -> i, 3, 1, 2, 1 -> j, 3, 1, 2, 2 -> k, 3, 1, 2, 3 -> l, 3, 2 -> m, 4 -> n




    How can I invert this operation? How can I construct A solely from the information given in B?










    share|improve this question









    $endgroup$














      4












      4








      4





      $begingroup$


      I have an arbitrary ragged nested list-of-lists (a tree) like



      A = a, b, c, d, e, f, g, h, i, j, k, l, m, n;


      Its structure is given by the rules



      B = Flatten[MapIndexed[#2 -> #1 &, A, -1]]



      1, 1 -> a, 1, 2 -> b, 2, 1 -> c, 2, 2 -> d, 3, 1, 1, 1 -> e, 3, 1, 1, 2 -> f, 3, 1, 1, 3 -> g, 3, 1, 1, 4 -> h, 3, 1, 1, 5 -> i, 3, 1, 2, 1 -> j, 3, 1, 2, 2 -> k, 3, 1, 2, 3 -> l, 3, 2 -> m, 4 -> n




      How can I invert this operation? How can I construct A solely from the information given in B?










      share|improve this question









      $endgroup$




      I have an arbitrary ragged nested list-of-lists (a tree) like



      A = a, b, c, d, e, f, g, h, i, j, k, l, m, n;


      Its structure is given by the rules



      B = Flatten[MapIndexed[#2 -> #1 &, A, -1]]



      1, 1 -> a, 1, 2 -> b, 2, 1 -> c, 2, 2 -> d, 3, 1, 1, 1 -> e, 3, 1, 1, 2 -> f, 3, 1, 1, 3 -> g, 3, 1, 1, 4 -> h, 3, 1, 1, 5 -> i, 3, 1, 2, 1 -> j, 3, 1, 2, 2 -> k, 3, 1, 2, 3 -> l, 3, 2 -> m, 4 -> n




      How can I invert this operation? How can I construct A solely from the information given in B?







      list-manipulation data-structures trees






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 3 hours ago









      RomanRoman

      3,9661022




      3,9661022




















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          Here's a procedural way:



          Block[
          Nothing,
          Module[
          m = Max[Length /@ Keys[B]], arr,
          arr = ConstantArray[Nothing, Max /@ Transpose[PadRight[#, m] & /@ Keys[B]]];
          Map[Function[arr[[Sequence @@ #[[1]]]] = #[[2]]], B];
          arr
          ]
          ]

          a, b, c, d, e, f, g, h, i, j, k, l, m, n





          share|improve this answer









          $endgroup$




















            1












            $begingroup$

            Here's an inefficient but reasonably simple way:



            groupMe[rules_] :=
            If[Head[rules[[1]]] === Rule,
            Values@GroupBy[
            rules,
            (#[[1, 1]] &) ->
            (If[Length[#[[1]]] === 1, #[[2]], #[[1, 2 ;;]] -> #[[2]]] &),
            groupMe
            ],
            rules[[1]]
            ]

            groupMe[B]

            a, b, c, d, e, f, g, h, i, j, k, l, m, n





            share|improve this answer









            $endgroup$




















              1












              $begingroup$

              Here's a convoluted way using pattern replacements:



              DeleteCases[
              With[m = Max[Length /@ Keys[B]],
              Array[
              List,
              Max /@ Transpose[PadRight[#, m] & /@ Keys[B]]
              ] /.
              Map[
              Fold[
              Insert[
              #, ___,
              _,
              Append[ConstantArray[1, #2], -1]] &,
              #[[1]],
              Range[m - Length[#[[1]]]]
              ] -> #[[2]] &,
              B
              ]
              ],
              __Integer,
              Infinity
              ]

              a, b, c, d, e, f, g, h, i, j, k, l, m, n





              share|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "387"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: false,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: null,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194217%2fhow-to-invert-mapindexed-on-a-ragged-structure-how-to-construct-a-tree-from-rul%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                2












                $begingroup$

                Here's a procedural way:



                Block[
                Nothing,
                Module[
                m = Max[Length /@ Keys[B]], arr,
                arr = ConstantArray[Nothing, Max /@ Transpose[PadRight[#, m] & /@ Keys[B]]];
                Map[Function[arr[[Sequence @@ #[[1]]]] = #[[2]]], B];
                arr
                ]
                ]

                a, b, c, d, e, f, g, h, i, j, k, l, m, n





                share|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  Here's a procedural way:



                  Block[
                  Nothing,
                  Module[
                  m = Max[Length /@ Keys[B]], arr,
                  arr = ConstantArray[Nothing, Max /@ Transpose[PadRight[#, m] & /@ Keys[B]]];
                  Map[Function[arr[[Sequence @@ #[[1]]]] = #[[2]]], B];
                  arr
                  ]
                  ]

                  a, b, c, d, e, f, g, h, i, j, k, l, m, n





                  share|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    Here's a procedural way:



                    Block[
                    Nothing,
                    Module[
                    m = Max[Length /@ Keys[B]], arr,
                    arr = ConstantArray[Nothing, Max /@ Transpose[PadRight[#, m] & /@ Keys[B]]];
                    Map[Function[arr[[Sequence @@ #[[1]]]] = #[[2]]], B];
                    arr
                    ]
                    ]

                    a, b, c, d, e, f, g, h, i, j, k, l, m, n





                    share|improve this answer









                    $endgroup$



                    Here's a procedural way:



                    Block[
                    Nothing,
                    Module[
                    m = Max[Length /@ Keys[B]], arr,
                    arr = ConstantArray[Nothing, Max /@ Transpose[PadRight[#, m] & /@ Keys[B]]];
                    Map[Function[arr[[Sequence @@ #[[1]]]] = #[[2]]], B];
                    arr
                    ]
                    ]

                    a, b, c, d, e, f, g, h, i, j, k, l, m, n






                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered 3 hours ago









                    b3m2a1b3m2a1

                    28.3k358163




                    28.3k358163





















                        1












                        $begingroup$

                        Here's an inefficient but reasonably simple way:



                        groupMe[rules_] :=
                        If[Head[rules[[1]]] === Rule,
                        Values@GroupBy[
                        rules,
                        (#[[1, 1]] &) ->
                        (If[Length[#[[1]]] === 1, #[[2]], #[[1, 2 ;;]] -> #[[2]]] &),
                        groupMe
                        ],
                        rules[[1]]
                        ]

                        groupMe[B]

                        a, b, c, d, e, f, g, h, i, j, k, l, m, n





                        share|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          Here's an inefficient but reasonably simple way:



                          groupMe[rules_] :=
                          If[Head[rules[[1]]] === Rule,
                          Values@GroupBy[
                          rules,
                          (#[[1, 1]] &) ->
                          (If[Length[#[[1]]] === 1, #[[2]], #[[1, 2 ;;]] -> #[[2]]] &),
                          groupMe
                          ],
                          rules[[1]]
                          ]

                          groupMe[B]

                          a, b, c, d, e, f, g, h, i, j, k, l, m, n





                          share|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            Here's an inefficient but reasonably simple way:



                            groupMe[rules_] :=
                            If[Head[rules[[1]]] === Rule,
                            Values@GroupBy[
                            rules,
                            (#[[1, 1]] &) ->
                            (If[Length[#[[1]]] === 1, #[[2]], #[[1, 2 ;;]] -> #[[2]]] &),
                            groupMe
                            ],
                            rules[[1]]
                            ]

                            groupMe[B]

                            a, b, c, d, e, f, g, h, i, j, k, l, m, n





                            share|improve this answer









                            $endgroup$



                            Here's an inefficient but reasonably simple way:



                            groupMe[rules_] :=
                            If[Head[rules[[1]]] === Rule,
                            Values@GroupBy[
                            rules,
                            (#[[1, 1]] &) ->
                            (If[Length[#[[1]]] === 1, #[[2]], #[[1, 2 ;;]] -> #[[2]]] &),
                            groupMe
                            ],
                            rules[[1]]
                            ]

                            groupMe[B]

                            a, b, c, d, e, f, g, h, i, j, k, l, m, n






                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered 3 hours ago









                            b3m2a1b3m2a1

                            28.3k358163




                            28.3k358163





















                                1












                                $begingroup$

                                Here's a convoluted way using pattern replacements:



                                DeleteCases[
                                With[m = Max[Length /@ Keys[B]],
                                Array[
                                List,
                                Max /@ Transpose[PadRight[#, m] & /@ Keys[B]]
                                ] /.
                                Map[
                                Fold[
                                Insert[
                                #, ___,
                                _,
                                Append[ConstantArray[1, #2], -1]] &,
                                #[[1]],
                                Range[m - Length[#[[1]]]]
                                ] -> #[[2]] &,
                                B
                                ]
                                ],
                                __Integer,
                                Infinity
                                ]

                                a, b, c, d, e, f, g, h, i, j, k, l, m, n





                                share|improve this answer









                                $endgroup$

















                                  1












                                  $begingroup$

                                  Here's a convoluted way using pattern replacements:



                                  DeleteCases[
                                  With[m = Max[Length /@ Keys[B]],
                                  Array[
                                  List,
                                  Max /@ Transpose[PadRight[#, m] & /@ Keys[B]]
                                  ] /.
                                  Map[
                                  Fold[
                                  Insert[
                                  #, ___,
                                  _,
                                  Append[ConstantArray[1, #2], -1]] &,
                                  #[[1]],
                                  Range[m - Length[#[[1]]]]
                                  ] -> #[[2]] &,
                                  B
                                  ]
                                  ],
                                  __Integer,
                                  Infinity
                                  ]

                                  a, b, c, d, e, f, g, h, i, j, k, l, m, n





                                  share|improve this answer









                                  $endgroup$















                                    1












                                    1








                                    1





                                    $begingroup$

                                    Here's a convoluted way using pattern replacements:



                                    DeleteCases[
                                    With[m = Max[Length /@ Keys[B]],
                                    Array[
                                    List,
                                    Max /@ Transpose[PadRight[#, m] & /@ Keys[B]]
                                    ] /.
                                    Map[
                                    Fold[
                                    Insert[
                                    #, ___,
                                    _,
                                    Append[ConstantArray[1, #2], -1]] &,
                                    #[[1]],
                                    Range[m - Length[#[[1]]]]
                                    ] -> #[[2]] &,
                                    B
                                    ]
                                    ],
                                    __Integer,
                                    Infinity
                                    ]

                                    a, b, c, d, e, f, g, h, i, j, k, l, m, n





                                    share|improve this answer









                                    $endgroup$



                                    Here's a convoluted way using pattern replacements:



                                    DeleteCases[
                                    With[m = Max[Length /@ Keys[B]],
                                    Array[
                                    List,
                                    Max /@ Transpose[PadRight[#, m] & /@ Keys[B]]
                                    ] /.
                                    Map[
                                    Fold[
                                    Insert[
                                    #, ___,
                                    _,
                                    Append[ConstantArray[1, #2], -1]] &,
                                    #[[1]],
                                    Range[m - Length[#[[1]]]]
                                    ] -> #[[2]] &,
                                    B
                                    ]
                                    ],
                                    __Integer,
                                    Infinity
                                    ]

                                    a, b, c, d, e, f, g, h, i, j, k, l, m, n






                                    share|improve this answer












                                    share|improve this answer



                                    share|improve this answer










                                    answered 3 hours ago









                                    b3m2a1b3m2a1

                                    28.3k358163




                                    28.3k358163



























                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Mathematica Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194217%2fhow-to-invert-mapindexed-on-a-ragged-structure-how-to-construct-a-tree-from-rul%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Dapidodigma demeter Subspecies | Notae | Tabula navigationisDapidodigmaAfrotropical Butterflies: Lycaenidae - Subtribe IolainaAmplifica

                                        Constantinus Vanšenkin Nexus externi | Tabula navigationisБольшая российская энциклопедияAmplifica

                                        Gaius Norbanus Flaccus (consul 38 a.C.n.) Index De gente | De cursu honorum | Notae | Fontes | Si vis plura legere | Tabula navigationisHic legere potes