Solving polynominals equations (relationship of roots)Quadratic equation - $alpha$ and $beta$ RootsTechnique to simplify algebraic calculations on roots of polynomialInterval of Polynomial Root FindingFind $alpha^3 + beta^3$ which are roots of a quadratic equation.sum and product of roots of polynomials: finding equations for rootsSolving two Cubic Equation on their Roots.Finding an equation with related rootsFind the roots of $acx^2-b(c+a)x+(c+a)^2=0$If $3x^2-6x+p=0$ has roots $alpha$ and $beta$, then find a quadratic with roots $(alpha+beta)/alpha$ and $(alpha+beta)/beta$Find the roots of $3x^3-4x-8$
Can we say “you can pay when the order gets ready”?
Contradiction proof for inequality of P and NP?
Size of electromagnet needed to replicate Earth's magnetic field
How did Captain America manage to do this?
Why does nature favour the Laplacian?
Can I criticise the more senior developers around me for not writing clean code?
Why must Chinese maps be obfuscated?
How can I practically buy stocks?
Solving polynominals equations (relationship of roots)
What is the philosophical significance of speech acts/implicature?
Philosophical question on logistic regression: why isn't the optimal threshold value trained?
Phrase for the opposite of "foolproof"
Dynamic SOQL query relationship with field visibility for Users
How can Republicans who favour free markets, consistently express anger when they don't like the outcome of that choice?
Partitioning the Reals into two Locally Uncountable, Dense Sets
Pre-plastic human skin alternative
Two field separators (colon and space) in awk
Does tea made with boiling water cool faster than tea made with boiled (but still hot) water?
How to write a column outside the braces in a matrix?
Do electrons go to even lower ground states after exothermic reactions?
How to pronounce 'c++' in Spanish
What happened to Captain America in Endgame?
How does a program know if stdout is connected to a terminal or a pipe?
Can someone publish a story that happened to you?
Solving polynominals equations (relationship of roots)
Quadratic equation - $alpha$ and $beta$ RootsTechnique to simplify algebraic calculations on roots of polynomialInterval of Polynomial Root FindingFind $alpha^3 + beta^3$ which are roots of a quadratic equation.sum and product of roots of polynomials: finding equations for rootsSolving two Cubic Equation on their Roots.Finding an equation with related rootsFind the roots of $acx^2-b(c+a)x+(c+a)^2=0$If $3x^2-6x+p=0$ has roots $alpha$ and $beta$, then find a quadratic with roots $(alpha+beta)/alpha$ and $(alpha+beta)/beta$Find the roots of $3x^3-4x-8$
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$fracalpha+betaomega+fracalpha+omegabeta+fracbeta+omegaalpha$$
So far I have found:
$$alpha+beta+omega=frac-ba = 4 \
alphabeta+betaomega+alphaomega=fracca = 1 \
alpha×beta×omega=frac-da = -6$$
And evaluated the above fractions creating
$$fracalpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2alphabetaomega$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac113$
polynomials roots
$endgroup$
add a comment |
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$fracalpha+betaomega+fracalpha+omegabeta+fracbeta+omegaalpha$$
So far I have found:
$$alpha+beta+omega=frac-ba = 4 \
alphabeta+betaomega+alphaomega=fracca = 1 \
alpha×beta×omega=frac-da = -6$$
And evaluated the above fractions creating
$$fracalpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2alphabetaomega$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac113$
polynomials roots
$endgroup$
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
add a comment |
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$fracalpha+betaomega+fracalpha+omegabeta+fracbeta+omegaalpha$$
So far I have found:
$$alpha+beta+omega=frac-ba = 4 \
alphabeta+betaomega+alphaomega=fracca = 1 \
alpha×beta×omega=frac-da = -6$$
And evaluated the above fractions creating
$$fracalpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2alphabetaomega$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac113$
polynomials roots
$endgroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$fracalpha+betaomega+fracalpha+omegabeta+fracbeta+omegaalpha$$
So far I have found:
$$alpha+beta+omega=frac-ba = 4 \
alphabeta+betaomega+alphaomega=fracca = 1 \
alpha×beta×omega=frac-da = -6$$
And evaluated the above fractions creating
$$fracalpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2alphabetaomega$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac113$
polynomials roots
polynomials roots
edited 48 mins ago
Lee David Chung Lin
4,51851342
4,51851342
asked 1 hour ago
Alex Alex
186
186
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
add a comment |
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
1
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$
$$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$
$$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$
$$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$
$$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac23-3=-frac113$$
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
frac13-5+1=\
-frac113.$$
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204072%2fsolving-polynominals-equations-relationship-of-roots%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$
$$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$
$$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$
$$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$
$$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$
$$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$
$$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$
$$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$
$$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$
$$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$
$$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$
$$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$
$$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$
$$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$
$$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$
$$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$
$$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
answered 1 hour ago
user1952500user1952500
1,5351016
1,5351016
add a comment |
add a comment |
$begingroup$
Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac23-3=-frac113$$
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac23-3=-frac113$$
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac23-3=-frac113$$
$endgroup$
Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac23-3=-frac113$$
answered 1 hour ago
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
79.7k42867
79.7k42867
add a comment |
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
frac13-5+1=\
-frac113.$$
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
frac13-5+1=\
-frac113.$$
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
frac13-5+1=\
-frac113.$$
$endgroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
frac13-5+1=\
-frac113.$$
answered 24 mins ago
farruhotafarruhota
22.5k2942
22.5k2942
add a comment |
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.
$endgroup$
That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.
answered 1 hour ago
Chris CusterChris Custer
14.7k3827
14.7k3827
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204072%2fsolving-polynominals-equations-relationship-of-roots%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago