The answer of a series with complex variable analysis Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do we know Taylor's Series works with complex numbers?Computing an Integral Using Complex AnalysisEvaluation the integral in complex analysisFourier series without Fourier analysis techniquescomplex analysis - differentiabiliitycomplex analysis exponential series evaluationQuadratic Polynomial with complex coefficientsUsing complex variables to find sums of Fourier seriesGeometric series and complex numbersRelationship between hyperbolic functions and complex analysis
Trying to understand entropy as a novice in thermodynamics
How to write capital alpha?
Can two people see the same photon?
What would you call this weird metallic apparatus that allows you to lift people?
How can I prevent/balance waiting and turtling as a response to cooldown mechanics
How to align enumerate environment inside description environment
Did any compiler fully use 80-bit floating point?
Was Kant an Intuitionist about mathematical objects?
My mentor says to set image to Fine instead of RAW — how is this different from JPG?
New Order #6: Easter Egg
Why weren't discrete x86 CPUs ever used in game hardware?
"klopfte jemand" or "jemand klopfte"?
What does the writing on Poe's helmet say?
Simple Http Server
Is there hard evidence that the grant peer review system performs significantly better than random?
What does 丫 mean? 丫是什么意思?
What is the origin of 落第?
Why is a lens darker than other ones when applying the same settings?
Delete free apps from library
How to change the tick of the color bar legend to black
The test team as an enemy of development? And how can this be avoided?
Sally's older brother
Is there public access to the Meteor Crater in Arizona?
Should a wizard buy fine inks every time he want to copy spells into his spellbook?
The answer of a series with complex variable analysis
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do we know Taylor's Series works with complex numbers?Computing an Integral Using Complex AnalysisEvaluation the integral in complex analysisFourier series without Fourier analysis techniquescomplex analysis - differentiabiliitycomplex analysis exponential series evaluationQuadratic Polynomial with complex coefficientsUsing complex variables to find sums of Fourier seriesGeometric series and complex numbersRelationship between hyperbolic functions and complex analysis
$begingroup$
We have a series as
$cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$
How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?
$U=fracsin(fracn+12alpha)sin(frac12alpha)cos(theta+frac12nalpha)$
sequences-and-series complex-analysis complex-numbers
$endgroup$
add a comment |
$begingroup$
We have a series as
$cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$
How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?
$U=fracsin(fracn+12alpha)sin(frac12alpha)cos(theta+frac12nalpha)$
sequences-and-series complex-analysis complex-numbers
$endgroup$
add a comment |
$begingroup$
We have a series as
$cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$
How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?
$U=fracsin(fracn+12alpha)sin(frac12alpha)cos(theta+frac12nalpha)$
sequences-and-series complex-analysis complex-numbers
$endgroup$
We have a series as
$cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$
How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?
$U=fracsin(fracn+12alpha)sin(frac12alpha)cos(theta+frac12nalpha)$
sequences-and-series complex-analysis complex-numbers
sequences-and-series complex-analysis complex-numbers
edited 39 mins ago
John Doe
12.1k11340
12.1k11340
asked 1 hour ago
UnbelievableUnbelievable
1163
1163
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Use the fact that this is almost a geometric series. $$beginalignU&=mathfrak R[e^itheta +e^itheta+ialpha+cdots+e^itheta+inalpha]\&=mathfrak Rleft[e^ithetasum_j=0^n e^ijalpharight]\&=mathfrak Rleft[e^ithetafrac1-e^i(n+1)alpha1-e^ialpharight]\&=mathfrak Rleft[e^ithetafrace^-i(n+1)alpha/2-e^i(n+1)alpha/2e^-ialpha/2-e^ialpha/2e^inalpha/2right]\&=mathfrak Rleft[e^i(nalpha/2+theta)fracsin[(n+1)alpha/2]sin[alpha/2]right]\&=cos(theta+tfracnalpha2)fracsinleft(frac12(n+1)alpharight)sinleft(frac12alpharight)endalign$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195401%2fthe-answer-of-a-series-with-complex-variable-analysis%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use the fact that this is almost a geometric series. $$beginalignU&=mathfrak R[e^itheta +e^itheta+ialpha+cdots+e^itheta+inalpha]\&=mathfrak Rleft[e^ithetasum_j=0^n e^ijalpharight]\&=mathfrak Rleft[e^ithetafrac1-e^i(n+1)alpha1-e^ialpharight]\&=mathfrak Rleft[e^ithetafrace^-i(n+1)alpha/2-e^i(n+1)alpha/2e^-ialpha/2-e^ialpha/2e^inalpha/2right]\&=mathfrak Rleft[e^i(nalpha/2+theta)fracsin[(n+1)alpha/2]sin[alpha/2]right]\&=cos(theta+tfracnalpha2)fracsinleft(frac12(n+1)alpharight)sinleft(frac12alpharight)endalign$$
$endgroup$
add a comment |
$begingroup$
Use the fact that this is almost a geometric series. $$beginalignU&=mathfrak R[e^itheta +e^itheta+ialpha+cdots+e^itheta+inalpha]\&=mathfrak Rleft[e^ithetasum_j=0^n e^ijalpharight]\&=mathfrak Rleft[e^ithetafrac1-e^i(n+1)alpha1-e^ialpharight]\&=mathfrak Rleft[e^ithetafrace^-i(n+1)alpha/2-e^i(n+1)alpha/2e^-ialpha/2-e^ialpha/2e^inalpha/2right]\&=mathfrak Rleft[e^i(nalpha/2+theta)fracsin[(n+1)alpha/2]sin[alpha/2]right]\&=cos(theta+tfracnalpha2)fracsinleft(frac12(n+1)alpharight)sinleft(frac12alpharight)endalign$$
$endgroup$
add a comment |
$begingroup$
Use the fact that this is almost a geometric series. $$beginalignU&=mathfrak R[e^itheta +e^itheta+ialpha+cdots+e^itheta+inalpha]\&=mathfrak Rleft[e^ithetasum_j=0^n e^ijalpharight]\&=mathfrak Rleft[e^ithetafrac1-e^i(n+1)alpha1-e^ialpharight]\&=mathfrak Rleft[e^ithetafrace^-i(n+1)alpha/2-e^i(n+1)alpha/2e^-ialpha/2-e^ialpha/2e^inalpha/2right]\&=mathfrak Rleft[e^i(nalpha/2+theta)fracsin[(n+1)alpha/2]sin[alpha/2]right]\&=cos(theta+tfracnalpha2)fracsinleft(frac12(n+1)alpharight)sinleft(frac12alpharight)endalign$$
$endgroup$
Use the fact that this is almost a geometric series. $$beginalignU&=mathfrak R[e^itheta +e^itheta+ialpha+cdots+e^itheta+inalpha]\&=mathfrak Rleft[e^ithetasum_j=0^n e^ijalpharight]\&=mathfrak Rleft[e^ithetafrac1-e^i(n+1)alpha1-e^ialpharight]\&=mathfrak Rleft[e^ithetafrace^-i(n+1)alpha/2-e^i(n+1)alpha/2e^-ialpha/2-e^ialpha/2e^inalpha/2right]\&=mathfrak Rleft[e^i(nalpha/2+theta)fracsin[(n+1)alpha/2]sin[alpha/2]right]\&=cos(theta+tfracnalpha2)fracsinleft(frac12(n+1)alpharight)sinleft(frac12alpharight)endalign$$
answered 41 mins ago
dialogdialog
997
997
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195401%2fthe-answer-of-a-series-with-complex-variable-analysis%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown