what is the log of the PDF for a Normal Distribution? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How to solve/compute for normal distribution and log-normal CDF inverse?Distribution of the convolution of squared normal and chi-squared variables?Cramer's theorem for a precise normal asymptotic distributionConditional Expected Value of Product of Normal and Log-Normal DistributionAsymptotic relation for a class of probability distribution functionsShow that $Y_1+Y_2$ have distribution skew-normalExpected Fisher's information matrix for Student's t-distribution?Expected Value of Maximum likelihood mean for Gaussian DistributionJoint density of the sum of a random and a non-random variable?Reversing conditional distribution

Tips to organize LaTeX presentations for a semester

retrieve food groups from food item list

What is the origin of 落第?

How can I prevent/balance waiting and turtling as a response to cooldown mechanics

What is the chair depicted in Cesare Maccari's 1889 painting "Cicerone denuncia Catilina"?

Random body shuffle every night—can we still function?

The test team as an enemy of development? And how can this be avoided?

Mounting TV on a weird wall that has some material between the drywall and stud

Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?

Why is a lens darker than other ones when applying the same settings?

NERDTreeMenu Remapping

Putting class ranking in CV, but against dept guidelines

Weaponising the Grasp-at-a-Distance spell

Why is it faster to reheat something than it is to cook it?

Test print coming out spongy

I can't produce songs

A proverb that is used to imply that you have unexpectedly faced a big problem

Co-worker has annoying ringtone

One-one communication

What is the "studentd" process?

How does the math work when buying airline miles?

Special flights

Why datecode is SO IMPORTANT to chip manufacturers?

Why weren't discrete x86 CPUs ever used in game hardware?



what is the log of the PDF for a Normal Distribution?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How to solve/compute for normal distribution and log-normal CDF inverse?Distribution of the convolution of squared normal and chi-squared variables?Cramer's theorem for a precise normal asymptotic distributionConditional Expected Value of Product of Normal and Log-Normal DistributionAsymptotic relation for a class of probability distribution functionsShow that $Y_1+Y_2$ have distribution skew-normalExpected Fisher's information matrix for Student's t-distribution?Expected Value of Maximum likelihood mean for Gaussian DistributionJoint density of the sum of a random and a non-random variable?Reversing conditional distribution



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago

















1












$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago













1












1








1





$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$




I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?







probability log






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









shi95shi95

83




83







  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago












  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago







3




3




$begingroup$
Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
$endgroup$
– Artem Mavrin
1 hour ago





$begingroup$
Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
$endgroup$
– Artem Mavrin
1 hour ago













$begingroup$
@ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
$endgroup$
– StatsStudent
1 hour ago




$begingroup$
@ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
$endgroup$
– StatsStudent
1 hour ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

For a single observed value $x$ you have log-likelihood:



$$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



$$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "65"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404191%2fwhat-is-the-log-of-the-pdf-for-a-normal-distribution%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    For a single observed value $x$ you have log-likelihood:



    $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



    For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



    $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      For a single observed value $x$ you have log-likelihood:



      $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



      For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



      $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        For a single observed value $x$ you have log-likelihood:



        $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



        For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



        $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






        share|cite|improve this answer









        $endgroup$



        For a single observed value $x$ you have log-likelihood:



        $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



        For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



        $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        BenBen

        28.9k233129




        28.9k233129



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404191%2fwhat-is-the-log-of-the-pdf-for-a-normal-distribution%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Dapidodigma demeter Subspecies | Notae | Tabula navigationisDapidodigmaAfrotropical Butterflies: Lycaenidae - Subtribe IolainaAmplifica

            Constantinus Vanšenkin Nexus externi | Tabula navigationisБольшая российская энциклопедияAmplifica

            Gaius Norbanus Flaccus (consul 38 a.C.n.) Index De gente | De cursu honorum | Notae | Fontes | Si vis plura legere | Tabula navigationisHic legere potes