What is the purpose of the constant in the probability density function The 2019 Stack Overflow Developer Survey Results Are InConfusion between probability distribution function and probability density functionProbability density function vs. probability mass functionBound 1D gaussian domain in the interval $[-3sigma, 3sigma]$ so it still is a probability density functionCan a probability density function be used directly as probability function?Probability density of a function of a random variableis this function increasing or decreasing on what intervals?Homework: questions about probability distribution functions and probability density functionGaussian function constantDeriving the Covariance of Multivariate Gaussianprobability density function of a function of a random variable?

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

Why can Shazam do this?

Is there a name of the flying bionic bird?

Is this food a bread or a loaf?

Is bread bad for ducks?

Why do UK politicians seemingly ignore opinion polls on Brexit?

"To split hairs" vs "To be pedantic"

What is the motivation for a law requiring 2 parties to consent for recording a conversation

Why Did Howard Stark Use All The Vibranium They Had On A Prototype Shield?

Does light intensity oscillate really fast since it is a wave?

Does a dangling wire really electrocute me if I'm standing in water?

A poker game description that does not feel gimmicky

CiviEvent: Public link for events of a specific type

How was Skylab's orbit inclination chosen?

Which Sci-Fi work first showed weapon of galactic-scale mass destruction?

How to create dashed lines/arrows in Illustrator

Understanding the implication of what "well-defined" means for the operation in quotient group

Is domain driven design an anti-SQL pattern?

Pristine Bit Checking

Are there any other methods to apply to solving simultaneous equations?

It's possible to achieve negative score?

Patience, young "Padovan"

aging parents with no investments

On the insanity of kings as an argument against monarchy



What is the purpose of the constant in the probability density function



The 2019 Stack Overflow Developer Survey Results Are InConfusion between probability distribution function and probability density functionProbability density function vs. probability mass functionBound 1D gaussian domain in the interval $[-3sigma, 3sigma]$ so it still is a probability density functionCan a probability density function be used directly as probability function?Probability density of a function of a random variableis this function increasing or decreasing on what intervals?Homework: questions about probability distribution functions and probability density functionGaussian function constantDeriving the Covariance of Multivariate Gaussianprobability density function of a function of a random variable?










1












$begingroup$


I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    1 hour ago
















1












$begingroup$


I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    1 hour ago














1












1








1





$begingroup$


I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?










share|cite|improve this question









$endgroup$




I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?







probability statistics probability-distributions gaussian-integral






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









BolboaBolboa

398516




398516







  • 1




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    1 hour ago













  • 1




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    1 hour ago








1




1




$begingroup$
so the integral of the probability density function over the entire space is equal to one
$endgroup$
– J. W. Tanner
1 hour ago





$begingroup$
so the integral of the probability density function over the entire space is equal to one
$endgroup$
– J. W. Tanner
1 hour ago











2 Answers
2






active

oldest

votes


















2












$begingroup$

If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
    $endgroup$
    – John Doe
    1 hour ago



















2












$begingroup$

It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181774%2fwhat-is-the-purpose-of-the-constant-in-the-probability-density-function%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
      $endgroup$
      – John Doe
      1 hour ago
















    2












    $begingroup$

    If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
      $endgroup$
      – John Doe
      1 hour ago














    2












    2








    2





    $begingroup$

    If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






    share|cite|improve this answer









    $endgroup$



    If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 1 hour ago









    CyclotomicFieldCyclotomicField

    2,4681314




    2,4681314







    • 1




      $begingroup$
      (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
      $endgroup$
      – John Doe
      1 hour ago













    • 1




      $begingroup$
      (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
      $endgroup$
      – John Doe
      1 hour ago








    1




    1




    $begingroup$
    (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
    $endgroup$
    – John Doe
    1 hour ago





    $begingroup$
    (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
    $endgroup$
    – John Doe
    1 hour ago












    2












    $begingroup$

    It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






        share|cite|improve this answer









        $endgroup$



        It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        GReyesGReyes

        2,39815




        2,39815



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181774%2fwhat-is-the-purpose-of-the-constant-in-the-probability-density-function%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Constantinus Vanšenkin Nexus externi | Tabula navigationisБольшая российская энциклопедияAmplifica

            Montigny (Ligerula) Nexus interni Nexus externi | Tabula navigationisGeoNames45214Amplifica

            Gaius Norbanus Flaccus (consul 38 a.C.n.) Index De gente | De cursu honorum | Notae | Fontes | Si vis plura legere | Tabula navigationisHic legere potes