Why does sin(x) - sin(y) equal this? The Next CEO of Stack OverflowProve that $sin(2A)+sin(2B)+sin(2C)=4sin(A)sin(B)sin(C)$ when $A,B,C$ are angles of a triangleWhy $sin(pi)$ sometimes equal to $0$?Understanding expanding trig identitiesWhy does this always equal $1$?When does this equation $cos(alpha + beta) = cos(alpha) + cos(beta)$ hold?Solve $ cos 2x - sin x +1=0$Writing equation in terms of sin and cosSolve Trigonometric Equality, Multiple Angle TrigonometryFinding relationships between angles, a, b and c when $sin a - sin b - sin c = 0$Does $sin^2x-cos^2x$ equal $cos(2x)$

Does the Idaho Potato Commission associate potato skins with healthy eating?

How dangerous is XSS

How can a day be of 24 hours?

Car headlights in a world without electricity

Is a distribution that is normal, but highly skewed, considered Gaussian?

Gödel's incompleteness theorems - what are the religious implications?

MT "will strike" & LXX "will watch carefully" (Gen 3:15)?

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?

Mathematica command that allows it to read my intentions

Does Germany produce more waste than the US?

What difference does it make matching a word with/without a trailing whitespace?

Is it reasonable to ask other researchers to send me their previous grant applications?

How to implement Comparable so it is consistent with identity-equality

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

pgfplots: How to draw a tangent graph below two others?

Strange use of "whether ... than ..." in official text

Could you use a laser beam as a modulated carrier wave for radio signal?

Can I hook these wires up to find the connection to a dead outlet?

That's an odd coin - I wonder why

What did the word "leisure" mean in late 18th Century usage?

How to coordinate airplane tickets?

Was the Stack Exchange "Happy April Fools" page fitting with the 90s code?

Shortening a title without changing its meaning

Upgrading From a 9 Speed Sora Derailleur?



Why does sin(x) - sin(y) equal this?



The Next CEO of Stack OverflowProve that $sin(2A)+sin(2B)+sin(2C)=4sin(A)sin(B)sin(C)$ when $A,B,C$ are angles of a triangleWhy $sin(pi)$ sometimes equal to $0$?Understanding expanding trig identitiesWhy does this always equal $1$?When does this equation $cos(alpha + beta) = cos(alpha) + cos(beta)$ hold?Solve $ cos 2x - sin x +1=0$Writing equation in terms of sin and cosSolve Trigonometric Equality, Multiple Angle TrigonometryFinding relationships between angles, a, b and c when $sin a - sin b - sin c = 0$Does $sin^2x-cos^2x$ equal $cos(2x)$










2












$begingroup$


Why does this equality hold?



$sin x - sin y = 2 cos(fracx+y2) sin(fracx-y2)$.



My professor was saying that since



(i) $sin(A+B)=sin A cos B+ sin B cos A$



and



(ii) $sin(A-B) = sin A cos B - sin B cos A$



we just let $A=fracx+y2$ and $B=fracx-y2$. But I tried to write this out and could not figure it out. Any help would be appreciated










share|cite|improve this question







New contributor




Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
    $endgroup$
    – Newman
    2 hours ago










  • $begingroup$
    After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
    $endgroup$
    – R_D
    2 hours ago















2












$begingroup$


Why does this equality hold?



$sin x - sin y = 2 cos(fracx+y2) sin(fracx-y2)$.



My professor was saying that since



(i) $sin(A+B)=sin A cos B+ sin B cos A$



and



(ii) $sin(A-B) = sin A cos B - sin B cos A$



we just let $A=fracx+y2$ and $B=fracx-y2$. But I tried to write this out and could not figure it out. Any help would be appreciated










share|cite|improve this question







New contributor




Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
    $endgroup$
    – Newman
    2 hours ago










  • $begingroup$
    After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
    $endgroup$
    – R_D
    2 hours ago













2












2








2





$begingroup$


Why does this equality hold?



$sin x - sin y = 2 cos(fracx+y2) sin(fracx-y2)$.



My professor was saying that since



(i) $sin(A+B)=sin A cos B+ sin B cos A$



and



(ii) $sin(A-B) = sin A cos B - sin B cos A$



we just let $A=fracx+y2$ and $B=fracx-y2$. But I tried to write this out and could not figure it out. Any help would be appreciated










share|cite|improve this question







New contributor




Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Why does this equality hold?



$sin x - sin y = 2 cos(fracx+y2) sin(fracx-y2)$.



My professor was saying that since



(i) $sin(A+B)=sin A cos B+ sin B cos A$



and



(ii) $sin(A-B) = sin A cos B - sin B cos A$



we just let $A=fracx+y2$ and $B=fracx-y2$. But I tried to write this out and could not figure it out. Any help would be appreciated







real-analysis analysis trigonometry






share|cite|improve this question







New contributor




Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









Ryan DuranRyan Duran

111




111




New contributor




Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
    $endgroup$
    – Newman
    2 hours ago










  • $begingroup$
    After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
    $endgroup$
    – R_D
    2 hours ago
















  • $begingroup$
    Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
    $endgroup$
    – Newman
    2 hours ago










  • $begingroup$
    After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
    $endgroup$
    – R_D
    2 hours ago















$begingroup$
Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
$endgroup$
– Newman
2 hours ago




$begingroup$
Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
$endgroup$
– Newman
2 hours ago












$begingroup$
After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
$endgroup$
– R_D
2 hours ago




$begingroup$
After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
$endgroup$
– R_D
2 hours ago










3 Answers
3






active

oldest

votes


















5












$begingroup$

The main trick is here:



beginalign
colorred x = x+yover2 + x-yover2\[1em]
colorbluey = x+yover2 - x-yover2
endalign



(You may evaluate the right-hand sides of them to verify that these strange equations are correct.)



Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain



beginalign
sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
endalign



All the rest is then only a routine calculation:



beginalign
requireenclose
&= sin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
&-left[sin left(x+yover2right) cosleft( x-yover2 right) -
sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
&= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
&-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)
\[3em]
&=2sin left(x-yover2right) cosleft( x+yover2 right)\
endalign






share|cite|improve this answer











$endgroup$




















    4












    $begingroup$

    Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.






    share|cite|improve this answer









    $endgroup$




















      2












      $begingroup$

      Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
      Note that $A+B=x$ and $A-B=y$.



      Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.



      To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );






        Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.









        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171404%2fwhy-does-sinx-siny-equal-this%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        5












        $begingroup$

        The main trick is here:



        beginalign
        colorred x = x+yover2 + x-yover2\[1em]
        colorbluey = x+yover2 - x-yover2
        endalign



        (You may evaluate the right-hand sides of them to verify that these strange equations are correct.)



        Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain



        beginalign
        sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
        endalign



        All the rest is then only a routine calculation:



        beginalign
        requireenclose
        &= sin left(x+yover2right) cosleft( x-yover2 right) +
        sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
        &-left[sin left(x+yover2right) cosleft( x-yover2 right) -
        sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
        &= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
        sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
        &-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
        sin left(x-yover2right) cosleft( x+yover2 right)
        \[3em]
        &=2sin left(x-yover2right) cosleft( x+yover2 right)\
        endalign






        share|cite|improve this answer











        $endgroup$

















          5












          $begingroup$

          The main trick is here:



          beginalign
          colorred x = x+yover2 + x-yover2\[1em]
          colorbluey = x+yover2 - x-yover2
          endalign



          (You may evaluate the right-hand sides of them to verify that these strange equations are correct.)



          Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain



          beginalign
          sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
          endalign



          All the rest is then only a routine calculation:



          beginalign
          requireenclose
          &= sin left(x+yover2right) cosleft( x-yover2 right) +
          sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
          &-left[sin left(x+yover2right) cosleft( x-yover2 right) -
          sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
          &= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
          sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
          &-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
          sin left(x-yover2right) cosleft( x+yover2 right)
          \[3em]
          &=2sin left(x-yover2right) cosleft( x+yover2 right)\
          endalign






          share|cite|improve this answer











          $endgroup$















            5












            5








            5





            $begingroup$

            The main trick is here:



            beginalign
            colorred x = x+yover2 + x-yover2\[1em]
            colorbluey = x+yover2 - x-yover2
            endalign



            (You may evaluate the right-hand sides of them to verify that these strange equations are correct.)



            Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain



            beginalign
            sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
            endalign



            All the rest is then only a routine calculation:



            beginalign
            requireenclose
            &= sin left(x+yover2right) cosleft( x-yover2 right) +
            sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
            &-left[sin left(x+yover2right) cosleft( x-yover2 right) -
            sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
            &= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
            sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
            &-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
            sin left(x-yover2right) cosleft( x+yover2 right)
            \[3em]
            &=2sin left(x-yover2right) cosleft( x+yover2 right)\
            endalign






            share|cite|improve this answer











            $endgroup$



            The main trick is here:



            beginalign
            colorred x = x+yover2 + x-yover2\[1em]
            colorbluey = x+yover2 - x-yover2
            endalign



            (You may evaluate the right-hand sides of them to verify that these strange equations are correct.)



            Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain



            beginalign
            sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
            endalign



            All the rest is then only a routine calculation:



            beginalign
            requireenclose
            &= sin left(x+yover2right) cosleft( x-yover2 right) +
            sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
            &-left[sin left(x+yover2right) cosleft( x-yover2 right) -
            sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
            &= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
            sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
            &-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
            sin left(x-yover2right) cosleft( x+yover2 right)
            \[3em]
            &=2sin left(x-yover2right) cosleft( x+yover2 right)\
            endalign







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 1 hour ago

























            answered 1 hour ago









            MarianDMarianD

            2,0831617




            2,0831617





















                4












                $begingroup$

                Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.






                share|cite|improve this answer









                $endgroup$

















                  4












                  $begingroup$

                  Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.






                  share|cite|improve this answer









                  $endgroup$















                    4












                    4








                    4





                    $begingroup$

                    Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.






                    share|cite|improve this answer









                    $endgroup$



                    Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 2 hours ago









                    John DoeJohn Doe

                    11.4k11239




                    11.4k11239





















                        2












                        $begingroup$

                        Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
                        Note that $A+B=x$ and $A-B=y$.



                        Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.



                        To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.






                        share|cite|improve this answer









                        $endgroup$

















                          2












                          $begingroup$

                          Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
                          Note that $A+B=x$ and $A-B=y$.



                          Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.



                          To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.






                          share|cite|improve this answer









                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
                            Note that $A+B=x$ and $A-B=y$.



                            Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.



                            To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.






                            share|cite|improve this answer









                            $endgroup$



                            Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
                            Note that $A+B=x$ and $A-B=y$.



                            Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.



                            To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 1 hour ago









                            AdmuthAdmuth

                            685




                            685




















                                Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.









                                draft saved

                                draft discarded


















                                Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.












                                Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.











                                Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.














                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171404%2fwhy-does-sinx-siny-equal-this%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Dapidodigma demeter Subspecies | Notae | Tabula navigationisDapidodigmaAfrotropical Butterflies: Lycaenidae - Subtribe IolainaAmplifica

                                Constantinus Vanšenkin Nexus externi | Tabula navigationisБольшая российская энциклопедияAmplifica

                                Gaius Norbanus Flaccus (consul 38 a.C.n.) Index De gente | De cursu honorum | Notae | Fontes | Si vis plura legere | Tabula navigationisHic legere potes