BV functions and wave equation Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?fundamental solution of radial wave equationare there soliton solutions for Euler and Navier-Stokes EquationLocal energy decay for variable-speed, divergence-form wave equation in non-trapping medium without obstaclesClassical theory for the incompressible Euler equation (reference request)Generalized wave equationmethods for situations where well-posedness criteria hold but global solutions do not existDecay estimates for wave and Klein-Gordon equation in “generic” curved backgroundsFinite speed of propagation for $u_tt - Delta (u^p) = 0$Reference request for a paper with Vanishing viscosity method and smooth approximation of initial dataInitial data and heat equation

BV functions and wave equation



Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?fundamental solution of radial wave equationare there soliton solutions for Euler and Navier-Stokes EquationLocal energy decay for variable-speed, divergence-form wave equation in non-trapping medium without obstaclesClassical theory for the incompressible Euler equation (reference request)Generalized wave equationmethods for situations where well-posedness criteria hold but global solutions do not existDecay estimates for wave and Klein-Gordon equation in “generic” curved backgroundsFinite speed of propagation for $u_tt - Delta (u^p) = 0$Reference request for a paper with Vanishing viscosity method and smooth approximation of initial dataInitial data and heat equation










4












$begingroup$


What is the role played by BV functions in the study of (possibly nonlinear) wave equations?



I think that one would need assume small initial data in $L^1$ or $H^1$ to get a well-posedness result (is that correct?).



Has the case of initial data in BV been studied?










share|cite|improve this question









$endgroup$
















    4












    $begingroup$


    What is the role played by BV functions in the study of (possibly nonlinear) wave equations?



    I think that one would need assume small initial data in $L^1$ or $H^1$ to get a well-posedness result (is that correct?).



    Has the case of initial data in BV been studied?










    share|cite|improve this question









    $endgroup$














      4












      4








      4


      3



      $begingroup$


      What is the role played by BV functions in the study of (possibly nonlinear) wave equations?



      I think that one would need assume small initial data in $L^1$ or $H^1$ to get a well-posedness result (is that correct?).



      Has the case of initial data in BV been studied?










      share|cite|improve this question









      $endgroup$




      What is the role played by BV functions in the study of (possibly nonlinear) wave equations?



      I think that one would need assume small initial data in $L^1$ or $H^1$ to get a well-posedness result (is that correct?).



      Has the case of initial data in BV been studied?







      reference-request ap.analysis-of-pdes soft-question hyperbolic-pde






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      RikuRiku

      376110




      376110




















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          The answer to this question depends a lot on the space dimension $n$. It is true that if $n=1$, the Cauchy problem has been studied with data in either $L^infty(R)$ or $BV(R)$. For superlinear wave equation, every $L^infty$-data yields at least one bounded global-in-time "entropy" solution. This is done by Compensated Compactness (DiPerna 1983). However, nobody knows whether this solution is unique. The $BV$ space is better suited in some sense, because Bressan was able to prove uniqueness of the entropy solution ; however, existence is obtained only if the initial data $u_0$ is not too large, in the sense that
          $$|u_0|_infty TV(u_0)<delta$$
          for some absolute finite constant $delta>0$. In some sense, the Cauchy problem is well-posed in $BV$, in a neighbourhood of constant data.



          In several space dimensions, Rauch remarked that you should forget the $BV$ space. The Cauchy problem cannot be well-posed in this topology. The reason is that the Cauchy problem for the linear wave equation itself is ill-posed in $BV$. This is a consequence of a theorem by Brenner in the 60's, which tells that this Cauchy problem is ill-posed in every $L^p$-space, except for the Hilbert case $p=2$. Brenner's theorem is a bit more complete. It says that for a first-order hyperbolic system
          $$partial_tf+sum_j=1^nA_jpartial_jf=0,$$
          the Cauchy problem is well-posed in some $L^p$ with $pne2$ if, and only if the matrices $A_j$ commutte to each other. This very strong condition amounts to saying that the system can be rewritten as a list of decoupled transport equations.



          It is interesting to notice that the opposite of Brenner's condition is that the characteristic cone of the differential operator has maximal curvature, hence the Cauchy problem admits a Strichartz-like estimate. You can read the discussion in the 1st chapter of my book co-authored with S. Benzoni-Gavage.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            This is very interesting. Thank you. Could you add some references for the claims regarding the one-dimensional case?
            $endgroup$
            – Riku
            2 hours ago










          • $begingroup$
            @Riku: the one dimensional case is described in A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem. Oxford University Press, Oxford, 2000. The result of Rauch referred to is Commun. Math. Phys. 106, 481--484 (1986).
            $endgroup$
            – Willie Wong
            1 hour ago










          • $begingroup$
            @WillieWong Isn't book of Bressan about conservation laws and not about wave equations?
            $endgroup$
            – Riku
            1 hour ago











          • $begingroup$
            @WillieWong In fact, why is the answer talking about entropy solutions?
            $endgroup$
            – Riku
            1 hour ago










          • $begingroup$
            @Riku: a wave equation is a particular form of a conservation law. For example, if you write $-partial_t^2 phi + partial^2_xphi = 0$ for the linear wave equation, and set $psi_1 = partial_t phi$ and $psi_2 = partial_x phi$, then the wave equation is equivalent to the conservation laws $partial_t psi_1 - partial_x psi_2 = 0$ coupled to $partial_t psi_2 - partial_x psi_1 = 0$.
            $endgroup$
            – Willie Wong
            1 hour ago











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "504"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328672%2fbv-functions-and-wave-equation%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          The answer to this question depends a lot on the space dimension $n$. It is true that if $n=1$, the Cauchy problem has been studied with data in either $L^infty(R)$ or $BV(R)$. For superlinear wave equation, every $L^infty$-data yields at least one bounded global-in-time "entropy" solution. This is done by Compensated Compactness (DiPerna 1983). However, nobody knows whether this solution is unique. The $BV$ space is better suited in some sense, because Bressan was able to prove uniqueness of the entropy solution ; however, existence is obtained only if the initial data $u_0$ is not too large, in the sense that
          $$|u_0|_infty TV(u_0)<delta$$
          for some absolute finite constant $delta>0$. In some sense, the Cauchy problem is well-posed in $BV$, in a neighbourhood of constant data.



          In several space dimensions, Rauch remarked that you should forget the $BV$ space. The Cauchy problem cannot be well-posed in this topology. The reason is that the Cauchy problem for the linear wave equation itself is ill-posed in $BV$. This is a consequence of a theorem by Brenner in the 60's, which tells that this Cauchy problem is ill-posed in every $L^p$-space, except for the Hilbert case $p=2$. Brenner's theorem is a bit more complete. It says that for a first-order hyperbolic system
          $$partial_tf+sum_j=1^nA_jpartial_jf=0,$$
          the Cauchy problem is well-posed in some $L^p$ with $pne2$ if, and only if the matrices $A_j$ commutte to each other. This very strong condition amounts to saying that the system can be rewritten as a list of decoupled transport equations.



          It is interesting to notice that the opposite of Brenner's condition is that the characteristic cone of the differential operator has maximal curvature, hence the Cauchy problem admits a Strichartz-like estimate. You can read the discussion in the 1st chapter of my book co-authored with S. Benzoni-Gavage.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            This is very interesting. Thank you. Could you add some references for the claims regarding the one-dimensional case?
            $endgroup$
            – Riku
            2 hours ago










          • $begingroup$
            @Riku: the one dimensional case is described in A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem. Oxford University Press, Oxford, 2000. The result of Rauch referred to is Commun. Math. Phys. 106, 481--484 (1986).
            $endgroup$
            – Willie Wong
            1 hour ago










          • $begingroup$
            @WillieWong Isn't book of Bressan about conservation laws and not about wave equations?
            $endgroup$
            – Riku
            1 hour ago











          • $begingroup$
            @WillieWong In fact, why is the answer talking about entropy solutions?
            $endgroup$
            – Riku
            1 hour ago










          • $begingroup$
            @Riku: a wave equation is a particular form of a conservation law. For example, if you write $-partial_t^2 phi + partial^2_xphi = 0$ for the linear wave equation, and set $psi_1 = partial_t phi$ and $psi_2 = partial_x phi$, then the wave equation is equivalent to the conservation laws $partial_t psi_1 - partial_x psi_2 = 0$ coupled to $partial_t psi_2 - partial_x psi_1 = 0$.
            $endgroup$
            – Willie Wong
            1 hour ago















          2












          $begingroup$

          The answer to this question depends a lot on the space dimension $n$. It is true that if $n=1$, the Cauchy problem has been studied with data in either $L^infty(R)$ or $BV(R)$. For superlinear wave equation, every $L^infty$-data yields at least one bounded global-in-time "entropy" solution. This is done by Compensated Compactness (DiPerna 1983). However, nobody knows whether this solution is unique. The $BV$ space is better suited in some sense, because Bressan was able to prove uniqueness of the entropy solution ; however, existence is obtained only if the initial data $u_0$ is not too large, in the sense that
          $$|u_0|_infty TV(u_0)<delta$$
          for some absolute finite constant $delta>0$. In some sense, the Cauchy problem is well-posed in $BV$, in a neighbourhood of constant data.



          In several space dimensions, Rauch remarked that you should forget the $BV$ space. The Cauchy problem cannot be well-posed in this topology. The reason is that the Cauchy problem for the linear wave equation itself is ill-posed in $BV$. This is a consequence of a theorem by Brenner in the 60's, which tells that this Cauchy problem is ill-posed in every $L^p$-space, except for the Hilbert case $p=2$. Brenner's theorem is a bit more complete. It says that for a first-order hyperbolic system
          $$partial_tf+sum_j=1^nA_jpartial_jf=0,$$
          the Cauchy problem is well-posed in some $L^p$ with $pne2$ if, and only if the matrices $A_j$ commutte to each other. This very strong condition amounts to saying that the system can be rewritten as a list of decoupled transport equations.



          It is interesting to notice that the opposite of Brenner's condition is that the characteristic cone of the differential operator has maximal curvature, hence the Cauchy problem admits a Strichartz-like estimate. You can read the discussion in the 1st chapter of my book co-authored with S. Benzoni-Gavage.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            This is very interesting. Thank you. Could you add some references for the claims regarding the one-dimensional case?
            $endgroup$
            – Riku
            2 hours ago










          • $begingroup$
            @Riku: the one dimensional case is described in A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem. Oxford University Press, Oxford, 2000. The result of Rauch referred to is Commun. Math. Phys. 106, 481--484 (1986).
            $endgroup$
            – Willie Wong
            1 hour ago










          • $begingroup$
            @WillieWong Isn't book of Bressan about conservation laws and not about wave equations?
            $endgroup$
            – Riku
            1 hour ago











          • $begingroup$
            @WillieWong In fact, why is the answer talking about entropy solutions?
            $endgroup$
            – Riku
            1 hour ago










          • $begingroup$
            @Riku: a wave equation is a particular form of a conservation law. For example, if you write $-partial_t^2 phi + partial^2_xphi = 0$ for the linear wave equation, and set $psi_1 = partial_t phi$ and $psi_2 = partial_x phi$, then the wave equation is equivalent to the conservation laws $partial_t psi_1 - partial_x psi_2 = 0$ coupled to $partial_t psi_2 - partial_x psi_1 = 0$.
            $endgroup$
            – Willie Wong
            1 hour ago













          2












          2








          2





          $begingroup$

          The answer to this question depends a lot on the space dimension $n$. It is true that if $n=1$, the Cauchy problem has been studied with data in either $L^infty(R)$ or $BV(R)$. For superlinear wave equation, every $L^infty$-data yields at least one bounded global-in-time "entropy" solution. This is done by Compensated Compactness (DiPerna 1983). However, nobody knows whether this solution is unique. The $BV$ space is better suited in some sense, because Bressan was able to prove uniqueness of the entropy solution ; however, existence is obtained only if the initial data $u_0$ is not too large, in the sense that
          $$|u_0|_infty TV(u_0)<delta$$
          for some absolute finite constant $delta>0$. In some sense, the Cauchy problem is well-posed in $BV$, in a neighbourhood of constant data.



          In several space dimensions, Rauch remarked that you should forget the $BV$ space. The Cauchy problem cannot be well-posed in this topology. The reason is that the Cauchy problem for the linear wave equation itself is ill-posed in $BV$. This is a consequence of a theorem by Brenner in the 60's, which tells that this Cauchy problem is ill-posed in every $L^p$-space, except for the Hilbert case $p=2$. Brenner's theorem is a bit more complete. It says that for a first-order hyperbolic system
          $$partial_tf+sum_j=1^nA_jpartial_jf=0,$$
          the Cauchy problem is well-posed in some $L^p$ with $pne2$ if, and only if the matrices $A_j$ commutte to each other. This very strong condition amounts to saying that the system can be rewritten as a list of decoupled transport equations.



          It is interesting to notice that the opposite of Brenner's condition is that the characteristic cone of the differential operator has maximal curvature, hence the Cauchy problem admits a Strichartz-like estimate. You can read the discussion in the 1st chapter of my book co-authored with S. Benzoni-Gavage.






          share|cite|improve this answer









          $endgroup$



          The answer to this question depends a lot on the space dimension $n$. It is true that if $n=1$, the Cauchy problem has been studied with data in either $L^infty(R)$ or $BV(R)$. For superlinear wave equation, every $L^infty$-data yields at least one bounded global-in-time "entropy" solution. This is done by Compensated Compactness (DiPerna 1983). However, nobody knows whether this solution is unique. The $BV$ space is better suited in some sense, because Bressan was able to prove uniqueness of the entropy solution ; however, existence is obtained only if the initial data $u_0$ is not too large, in the sense that
          $$|u_0|_infty TV(u_0)<delta$$
          for some absolute finite constant $delta>0$. In some sense, the Cauchy problem is well-posed in $BV$, in a neighbourhood of constant data.



          In several space dimensions, Rauch remarked that you should forget the $BV$ space. The Cauchy problem cannot be well-posed in this topology. The reason is that the Cauchy problem for the linear wave equation itself is ill-posed in $BV$. This is a consequence of a theorem by Brenner in the 60's, which tells that this Cauchy problem is ill-posed in every $L^p$-space, except for the Hilbert case $p=2$. Brenner's theorem is a bit more complete. It says that for a first-order hyperbolic system
          $$partial_tf+sum_j=1^nA_jpartial_jf=0,$$
          the Cauchy problem is well-posed in some $L^p$ with $pne2$ if, and only if the matrices $A_j$ commutte to each other. This very strong condition amounts to saying that the system can be rewritten as a list of decoupled transport equations.



          It is interesting to notice that the opposite of Brenner's condition is that the characteristic cone of the differential operator has maximal curvature, hence the Cauchy problem admits a Strichartz-like estimate. You can read the discussion in the 1st chapter of my book co-authored with S. Benzoni-Gavage.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          Denis SerreDenis Serre

          30k796200




          30k796200











          • $begingroup$
            This is very interesting. Thank you. Could you add some references for the claims regarding the one-dimensional case?
            $endgroup$
            – Riku
            2 hours ago










          • $begingroup$
            @Riku: the one dimensional case is described in A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem. Oxford University Press, Oxford, 2000. The result of Rauch referred to is Commun. Math. Phys. 106, 481--484 (1986).
            $endgroup$
            – Willie Wong
            1 hour ago










          • $begingroup$
            @WillieWong Isn't book of Bressan about conservation laws and not about wave equations?
            $endgroup$
            – Riku
            1 hour ago











          • $begingroup$
            @WillieWong In fact, why is the answer talking about entropy solutions?
            $endgroup$
            – Riku
            1 hour ago










          • $begingroup$
            @Riku: a wave equation is a particular form of a conservation law. For example, if you write $-partial_t^2 phi + partial^2_xphi = 0$ for the linear wave equation, and set $psi_1 = partial_t phi$ and $psi_2 = partial_x phi$, then the wave equation is equivalent to the conservation laws $partial_t psi_1 - partial_x psi_2 = 0$ coupled to $partial_t psi_2 - partial_x psi_1 = 0$.
            $endgroup$
            – Willie Wong
            1 hour ago
















          • $begingroup$
            This is very interesting. Thank you. Could you add some references for the claims regarding the one-dimensional case?
            $endgroup$
            – Riku
            2 hours ago










          • $begingroup$
            @Riku: the one dimensional case is described in A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem. Oxford University Press, Oxford, 2000. The result of Rauch referred to is Commun. Math. Phys. 106, 481--484 (1986).
            $endgroup$
            – Willie Wong
            1 hour ago










          • $begingroup$
            @WillieWong Isn't book of Bressan about conservation laws and not about wave equations?
            $endgroup$
            – Riku
            1 hour ago











          • $begingroup$
            @WillieWong In fact, why is the answer talking about entropy solutions?
            $endgroup$
            – Riku
            1 hour ago










          • $begingroup$
            @Riku: a wave equation is a particular form of a conservation law. For example, if you write $-partial_t^2 phi + partial^2_xphi = 0$ for the linear wave equation, and set $psi_1 = partial_t phi$ and $psi_2 = partial_x phi$, then the wave equation is equivalent to the conservation laws $partial_t psi_1 - partial_x psi_2 = 0$ coupled to $partial_t psi_2 - partial_x psi_1 = 0$.
            $endgroup$
            – Willie Wong
            1 hour ago















          $begingroup$
          This is very interesting. Thank you. Could you add some references for the claims regarding the one-dimensional case?
          $endgroup$
          – Riku
          2 hours ago




          $begingroup$
          This is very interesting. Thank you. Could you add some references for the claims regarding the one-dimensional case?
          $endgroup$
          – Riku
          2 hours ago












          $begingroup$
          @Riku: the one dimensional case is described in A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem. Oxford University Press, Oxford, 2000. The result of Rauch referred to is Commun. Math. Phys. 106, 481--484 (1986).
          $endgroup$
          – Willie Wong
          1 hour ago




          $begingroup$
          @Riku: the one dimensional case is described in A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem. Oxford University Press, Oxford, 2000. The result of Rauch referred to is Commun. Math. Phys. 106, 481--484 (1986).
          $endgroup$
          – Willie Wong
          1 hour ago












          $begingroup$
          @WillieWong Isn't book of Bressan about conservation laws and not about wave equations?
          $endgroup$
          – Riku
          1 hour ago





          $begingroup$
          @WillieWong Isn't book of Bressan about conservation laws and not about wave equations?
          $endgroup$
          – Riku
          1 hour ago













          $begingroup$
          @WillieWong In fact, why is the answer talking about entropy solutions?
          $endgroup$
          – Riku
          1 hour ago




          $begingroup$
          @WillieWong In fact, why is the answer talking about entropy solutions?
          $endgroup$
          – Riku
          1 hour ago












          $begingroup$
          @Riku: a wave equation is a particular form of a conservation law. For example, if you write $-partial_t^2 phi + partial^2_xphi = 0$ for the linear wave equation, and set $psi_1 = partial_t phi$ and $psi_2 = partial_x phi$, then the wave equation is equivalent to the conservation laws $partial_t psi_1 - partial_x psi_2 = 0$ coupled to $partial_t psi_2 - partial_x psi_1 = 0$.
          $endgroup$
          – Willie Wong
          1 hour ago




          $begingroup$
          @Riku: a wave equation is a particular form of a conservation law. For example, if you write $-partial_t^2 phi + partial^2_xphi = 0$ for the linear wave equation, and set $psi_1 = partial_t phi$ and $psi_2 = partial_x phi$, then the wave equation is equivalent to the conservation laws $partial_t psi_1 - partial_x psi_2 = 0$ coupled to $partial_t psi_2 - partial_x psi_1 = 0$.
          $endgroup$
          – Willie Wong
          1 hour ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328672%2fbv-functions-and-wave-equation%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Constantinus Vanšenkin Nexus externi | Tabula navigationisБольшая российская энциклопедияAmplifica

          Montigny (Ligerula) Nexus interni Nexus externi | Tabula navigationisGeoNames45214Amplifica

          Gaius Norbanus Flaccus (consul 38 a.C.n.) Index De gente | De cursu honorum | Notae | Fontes | Si vis plura legere | Tabula navigationisHic legere potes