Combinatorics problem on counting. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Combinatorics and elementary probabilityFinding Number Of Cases,Simple Counting Questionhow many integers are there between 10 000 and 99 999…Coloring integers: there exist 2000 consecutive integers among which 1000 of each colorSubset Counting questionCounting Techniques with CombinatoricsHow many odd $100$-digit numbers such that every two consecutive digits differ by exactly 2 are there?Combinatorics and countCounting elementsCounting the equal-differences of an permutation

Localisation of Category

Why do we bend a book to keep it straight?

Do any jurisdictions seriously consider reclassifying social media websites as publishers?

Drawing without replacement: why is the order of draw irrelevant?

Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?

Most bit efficient text communication method?

How fail-safe is nr as stop bytes?

Do wooden building fires get hotter than 600°C?

What was the first language to use conditional keywords?

Why do we need to use the builder design pattern when we can do the same thing with setters?

How can I reduce the gap between left and right of cdot with a macro?

Can a new player join a group only when a new campaign starts?

Generate an RGB colour grid

How do living politicians protect their readily obtainable signatures from misuse?

How do I find out the mythology and history of my Fortress?

Multiple OR (||) Conditions in If Statement

Denied boarding although I have proper visa and documentation. To whom should I make a complaint?

What is the topology associated with the algebras for the ultrafilter monad?

Selecting user stories during sprint planning

What initially awakened the Balrog?

NumericArray versus PackedArray in MMA12

Disembodied hand growing fangs

How could we fake a moon landing now?

How would a mousetrap for use in space work?



Combinatorics problem on counting.



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Combinatorics and elementary probabilityFinding Number Of Cases,Simple Counting Questionhow many integers are there between 10 000 and 99 999…Coloring integers: there exist 2000 consecutive integers among which 1000 of each colorSubset Counting questionCounting Techniques with CombinatoricsHow many odd $100$-digit numbers such that every two consecutive digits differ by exactly 2 are there?Combinatorics and countCounting elementsCounting the equal-differences of an permutation










3












$begingroup$


How many positive integers n are there such that all of the following take place:



1) n has 1000 digits.



2) all of the digits are odd.



3) the absolute value of the difference of any two consecutive (neighboring) digits is equal to 2.



Please help. I don’t even know how to start.










share|cite|improve this question









$endgroup$











  • $begingroup$
    Start with an easier problem: how many two-digit numbers are there? what about three-digit?
    $endgroup$
    – Vasya
    4 hours ago











  • $begingroup$
    I could simply guess the case of two digit numbers. How does it help me prove the general one?
    $endgroup$
    – furfur
    4 hours ago










  • $begingroup$
    You do not need to guess, you can count. How many choices for the first digit do you have? what about the second?
    $endgroup$
    – Vasya
    4 hours ago










  • $begingroup$
    For the first digit (call it a1) there are 5 choices. For the second digit at most 2 choices. Either a1-2 or a1+2. But it depends if a1 is greater than 2/ smaller than 8 etc. I’m stuck on this.
    $endgroup$
    – furfur
    4 hours ago






  • 2




    $begingroup$
    Letting $a_m$ be the number of such integers with $m$ digits, then $a_m$ obeys the recurrence $$a_m=4a_m-2-3a_m-4qquad textfor all mge 6.$$ The proof is based on Julian Mejia's answer, along with the Cayley-Hamilton theorem, but perhaps you can give a combinatorial proof of that recurrence, then solve it.
    $endgroup$
    – Mike Earnest
    2 hours ago















3












$begingroup$


How many positive integers n are there such that all of the following take place:



1) n has 1000 digits.



2) all of the digits are odd.



3) the absolute value of the difference of any two consecutive (neighboring) digits is equal to 2.



Please help. I don’t even know how to start.










share|cite|improve this question









$endgroup$











  • $begingroup$
    Start with an easier problem: how many two-digit numbers are there? what about three-digit?
    $endgroup$
    – Vasya
    4 hours ago











  • $begingroup$
    I could simply guess the case of two digit numbers. How does it help me prove the general one?
    $endgroup$
    – furfur
    4 hours ago










  • $begingroup$
    You do not need to guess, you can count. How many choices for the first digit do you have? what about the second?
    $endgroup$
    – Vasya
    4 hours ago










  • $begingroup$
    For the first digit (call it a1) there are 5 choices. For the second digit at most 2 choices. Either a1-2 or a1+2. But it depends if a1 is greater than 2/ smaller than 8 etc. I’m stuck on this.
    $endgroup$
    – furfur
    4 hours ago






  • 2




    $begingroup$
    Letting $a_m$ be the number of such integers with $m$ digits, then $a_m$ obeys the recurrence $$a_m=4a_m-2-3a_m-4qquad textfor all mge 6.$$ The proof is based on Julian Mejia's answer, along with the Cayley-Hamilton theorem, but perhaps you can give a combinatorial proof of that recurrence, then solve it.
    $endgroup$
    – Mike Earnest
    2 hours ago













3












3








3





$begingroup$


How many positive integers n are there such that all of the following take place:



1) n has 1000 digits.



2) all of the digits are odd.



3) the absolute value of the difference of any two consecutive (neighboring) digits is equal to 2.



Please help. I don’t even know how to start.










share|cite|improve this question









$endgroup$




How many positive integers n are there such that all of the following take place:



1) n has 1000 digits.



2) all of the digits are odd.



3) the absolute value of the difference of any two consecutive (neighboring) digits is equal to 2.



Please help. I don’t even know how to start.







combinatorics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 4 hours ago









furfurfurfur

1069




1069











  • $begingroup$
    Start with an easier problem: how many two-digit numbers are there? what about three-digit?
    $endgroup$
    – Vasya
    4 hours ago











  • $begingroup$
    I could simply guess the case of two digit numbers. How does it help me prove the general one?
    $endgroup$
    – furfur
    4 hours ago










  • $begingroup$
    You do not need to guess, you can count. How many choices for the first digit do you have? what about the second?
    $endgroup$
    – Vasya
    4 hours ago










  • $begingroup$
    For the first digit (call it a1) there are 5 choices. For the second digit at most 2 choices. Either a1-2 or a1+2. But it depends if a1 is greater than 2/ smaller than 8 etc. I’m stuck on this.
    $endgroup$
    – furfur
    4 hours ago






  • 2




    $begingroup$
    Letting $a_m$ be the number of such integers with $m$ digits, then $a_m$ obeys the recurrence $$a_m=4a_m-2-3a_m-4qquad textfor all mge 6.$$ The proof is based on Julian Mejia's answer, along with the Cayley-Hamilton theorem, but perhaps you can give a combinatorial proof of that recurrence, then solve it.
    $endgroup$
    – Mike Earnest
    2 hours ago
















  • $begingroup$
    Start with an easier problem: how many two-digit numbers are there? what about three-digit?
    $endgroup$
    – Vasya
    4 hours ago











  • $begingroup$
    I could simply guess the case of two digit numbers. How does it help me prove the general one?
    $endgroup$
    – furfur
    4 hours ago










  • $begingroup$
    You do not need to guess, you can count. How many choices for the first digit do you have? what about the second?
    $endgroup$
    – Vasya
    4 hours ago










  • $begingroup$
    For the first digit (call it a1) there are 5 choices. For the second digit at most 2 choices. Either a1-2 or a1+2. But it depends if a1 is greater than 2/ smaller than 8 etc. I’m stuck on this.
    $endgroup$
    – furfur
    4 hours ago






  • 2




    $begingroup$
    Letting $a_m$ be the number of such integers with $m$ digits, then $a_m$ obeys the recurrence $$a_m=4a_m-2-3a_m-4qquad textfor all mge 6.$$ The proof is based on Julian Mejia's answer, along with the Cayley-Hamilton theorem, but perhaps you can give a combinatorial proof of that recurrence, then solve it.
    $endgroup$
    – Mike Earnest
    2 hours ago















$begingroup$
Start with an easier problem: how many two-digit numbers are there? what about three-digit?
$endgroup$
– Vasya
4 hours ago





$begingroup$
Start with an easier problem: how many two-digit numbers are there? what about three-digit?
$endgroup$
– Vasya
4 hours ago













$begingroup$
I could simply guess the case of two digit numbers. How does it help me prove the general one?
$endgroup$
– furfur
4 hours ago




$begingroup$
I could simply guess the case of two digit numbers. How does it help me prove the general one?
$endgroup$
– furfur
4 hours ago












$begingroup$
You do not need to guess, you can count. How many choices for the first digit do you have? what about the second?
$endgroup$
– Vasya
4 hours ago




$begingroup$
You do not need to guess, you can count. How many choices for the first digit do you have? what about the second?
$endgroup$
– Vasya
4 hours ago












$begingroup$
For the first digit (call it a1) there are 5 choices. For the second digit at most 2 choices. Either a1-2 or a1+2. But it depends if a1 is greater than 2/ smaller than 8 etc. I’m stuck on this.
$endgroup$
– furfur
4 hours ago




$begingroup$
For the first digit (call it a1) there are 5 choices. For the second digit at most 2 choices. Either a1-2 or a1+2. But it depends if a1 is greater than 2/ smaller than 8 etc. I’m stuck on this.
$endgroup$
– furfur
4 hours ago




2




2




$begingroup$
Letting $a_m$ be the number of such integers with $m$ digits, then $a_m$ obeys the recurrence $$a_m=4a_m-2-3a_m-4qquad textfor all mge 6.$$ The proof is based on Julian Mejia's answer, along with the Cayley-Hamilton theorem, but perhaps you can give a combinatorial proof of that recurrence, then solve it.
$endgroup$
– Mike Earnest
2 hours ago




$begingroup$
Letting $a_m$ be the number of such integers with $m$ digits, then $a_m$ obeys the recurrence $$a_m=4a_m-2-3a_m-4qquad textfor all mge 6.$$ The proof is based on Julian Mejia's answer, along with the Cayley-Hamilton theorem, but perhaps you can give a combinatorial proof of that recurrence, then solve it.
$endgroup$
– Mike Earnest
2 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

Define $n_i=2i-1$ (so a bijection between 1,2,3,4,5 with 1,3,5,7,9).
Consider the 5x5 matrix $A=(a_i,j)$ with $a_i,j=1$ if $n_i$ and $n_j$ differ by 2 and $a_i,j=0$ otherwise. Then, the number of positive integers with "m" digits satisfying your properties is the sum of entries of $A^m-1$. So you want to find the sum of entries of $A^999$. I don't know if this is easy to compute without computers.



Edit:
We have $$A=left(beginarrayccccc
0&1&0&0&0\
1&0&1&0&0\
0&1&0&1&0\
0&0&1&0&1\
0&0&0&1&0\
endarray
right)$$

So, thanks to @Mike's comment, it shouldn't be difficult to find the entries of $A^999$ we have that $A=PDP^-1$ with



$$D=left(beginarrayccccc
-1&0&0&0&0\
0&0&0&0&0\
0&0&1&0&0\
0&0&0&-sqrt3&0\
0&0&0&0&sqrt3\
endarray
right)$$



$$P=left(beginarrayccccc
-1&1&-1&1&1\
1&0&-1&-sqrt3&sqrt3\
0&-1&0&2&2\
-1&0&1&-sqrt3&sqrt3\
1&1&1&1&1\
endarray
right)$$

So, we can compute $A^999=PD^999P^-1$ whose entries will be a linear combination of $(-1)^999, (1)^999, (-sqrt3)^999,(sqrt3)^999$.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    It shouldn't be too bad to diagonalize $A$. The characteristic polynomial is $lambda^5-4lambda^3+3lambda=lambda(lambda^2-1)(lambda^2-3)$, etc.
    $endgroup$
    – Mike Earnest
    3 hours ago


















1












$begingroup$

Here is a OCaml program that computes the number of numbers in term of the size of the number:



type 'a stream= Eos| StrCons of 'a * (unit-> 'a stream)


let hdStr (s: 'a stream) : 'a =
match s with
| Eos -> failwith "headless stream"
| StrCons (x,_) -> x;;

let tlStr (s : 'a stream) : 'a stream =
match s with
| Eos -> failwith "empty stream"
| StrCons (x, t) -> t ();;



let rec listify (s : 'a stream) (n: int) : 'a list =
if n <= 0 then []
else
match s with
| Eos -> []
| _ -> (hdStr s) :: listify (tlStr s) (n - 1);;

let rec howmanynumber start step=
if step = 0 then 1 else
match start with
|1->howmanynumber 3 (step-1)
|3->howmanynumber 1 (step-1) + howmanynumber 5 (step-1)
|5->howmanynumber 3 (step-1) + howmanynumber 7 (step-1)
|7->howmanynumber 5 (step-1) + howmanynumber 9 (step-1)
|9->howmanynumber 7 (step-1)
|_->failwith "exception error"



let count n=
(howmanynumber 1 n)+(howmanynumber 3 n)+(howmanynumber 5 n)+(howmanynumber 7 n)+(howmanynumber 9 n)

let rec thisseq n = StrCons(count n , fun ()-> thisseq (n+1))

let result = thisseq 1


So Based on @Julian solution, the answer is the sum of entries of



$beginbmatrix
0 & 1 & 0 & 0 & 0 \
1 & 0 & 1 & 0 & 0 \
0 & 1 & 0 & 1 & 0 \
0 & 0 & 1 & 0 & 1\
0 & 0 & 0 & 1 & 0 \
endbmatrix^999 * beginbmatrix
1 \
1 \
1 \
1 \
1 \
endbmatrix$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you! But it was supposed to be a mathematical proof, since we are on math.stackexchange. Thank you for your effort though!
    $endgroup$
    – furfur
    3 hours ago


















1












$begingroup$

The text was too lengthy for a comment and aims on finalizing the previous answers and comments, which boil down to a very simple final answer for $nge2$: $$a_n=begincaseshphantom18cdot 3^fracn-22,& ntext even,\14 cdot 3^fracn-32,& ntext odd.endcasestag1$$



The most simple way to prove $(1)$ is to count directly the number of ways for the cases $n=2,3,4,5$ obtaining $a_n=8,14,24,42$, and then proceed by induction applying the recurrence relation suggested by Mike Earnest on the base of the characteristic polynomial of the matrix introduced by Julian Mejia:
$$
a_n=4a_n-2-3a_n-4.tag2
$$



In fact the simplicity of the answer suggests that there is possibly a simpler way to prove $(2)$ or even directly $(1)$.






share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3192709%2fcombinatorics-problem-on-counting%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Define $n_i=2i-1$ (so a bijection between 1,2,3,4,5 with 1,3,5,7,9).
    Consider the 5x5 matrix $A=(a_i,j)$ with $a_i,j=1$ if $n_i$ and $n_j$ differ by 2 and $a_i,j=0$ otherwise. Then, the number of positive integers with "m" digits satisfying your properties is the sum of entries of $A^m-1$. So you want to find the sum of entries of $A^999$. I don't know if this is easy to compute without computers.



    Edit:
    We have $$A=left(beginarrayccccc
    0&1&0&0&0\
    1&0&1&0&0\
    0&1&0&1&0\
    0&0&1&0&1\
    0&0&0&1&0\
    endarray
    right)$$

    So, thanks to @Mike's comment, it shouldn't be difficult to find the entries of $A^999$ we have that $A=PDP^-1$ with



    $$D=left(beginarrayccccc
    -1&0&0&0&0\
    0&0&0&0&0\
    0&0&1&0&0\
    0&0&0&-sqrt3&0\
    0&0&0&0&sqrt3\
    endarray
    right)$$



    $$P=left(beginarrayccccc
    -1&1&-1&1&1\
    1&0&-1&-sqrt3&sqrt3\
    0&-1&0&2&2\
    -1&0&1&-sqrt3&sqrt3\
    1&1&1&1&1\
    endarray
    right)$$

    So, we can compute $A^999=PD^999P^-1$ whose entries will be a linear combination of $(-1)^999, (1)^999, (-sqrt3)^999,(sqrt3)^999$.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      It shouldn't be too bad to diagonalize $A$. The characteristic polynomial is $lambda^5-4lambda^3+3lambda=lambda(lambda^2-1)(lambda^2-3)$, etc.
      $endgroup$
      – Mike Earnest
      3 hours ago















    2












    $begingroup$

    Define $n_i=2i-1$ (so a bijection between 1,2,3,4,5 with 1,3,5,7,9).
    Consider the 5x5 matrix $A=(a_i,j)$ with $a_i,j=1$ if $n_i$ and $n_j$ differ by 2 and $a_i,j=0$ otherwise. Then, the number of positive integers with "m" digits satisfying your properties is the sum of entries of $A^m-1$. So you want to find the sum of entries of $A^999$. I don't know if this is easy to compute without computers.



    Edit:
    We have $$A=left(beginarrayccccc
    0&1&0&0&0\
    1&0&1&0&0\
    0&1&0&1&0\
    0&0&1&0&1\
    0&0&0&1&0\
    endarray
    right)$$

    So, thanks to @Mike's comment, it shouldn't be difficult to find the entries of $A^999$ we have that $A=PDP^-1$ with



    $$D=left(beginarrayccccc
    -1&0&0&0&0\
    0&0&0&0&0\
    0&0&1&0&0\
    0&0&0&-sqrt3&0\
    0&0&0&0&sqrt3\
    endarray
    right)$$



    $$P=left(beginarrayccccc
    -1&1&-1&1&1\
    1&0&-1&-sqrt3&sqrt3\
    0&-1&0&2&2\
    -1&0&1&-sqrt3&sqrt3\
    1&1&1&1&1\
    endarray
    right)$$

    So, we can compute $A^999=PD^999P^-1$ whose entries will be a linear combination of $(-1)^999, (1)^999, (-sqrt3)^999,(sqrt3)^999$.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      It shouldn't be too bad to diagonalize $A$. The characteristic polynomial is $lambda^5-4lambda^3+3lambda=lambda(lambda^2-1)(lambda^2-3)$, etc.
      $endgroup$
      – Mike Earnest
      3 hours ago













    2












    2








    2





    $begingroup$

    Define $n_i=2i-1$ (so a bijection between 1,2,3,4,5 with 1,3,5,7,9).
    Consider the 5x5 matrix $A=(a_i,j)$ with $a_i,j=1$ if $n_i$ and $n_j$ differ by 2 and $a_i,j=0$ otherwise. Then, the number of positive integers with "m" digits satisfying your properties is the sum of entries of $A^m-1$. So you want to find the sum of entries of $A^999$. I don't know if this is easy to compute without computers.



    Edit:
    We have $$A=left(beginarrayccccc
    0&1&0&0&0\
    1&0&1&0&0\
    0&1&0&1&0\
    0&0&1&0&1\
    0&0&0&1&0\
    endarray
    right)$$

    So, thanks to @Mike's comment, it shouldn't be difficult to find the entries of $A^999$ we have that $A=PDP^-1$ with



    $$D=left(beginarrayccccc
    -1&0&0&0&0\
    0&0&0&0&0\
    0&0&1&0&0\
    0&0&0&-sqrt3&0\
    0&0&0&0&sqrt3\
    endarray
    right)$$



    $$P=left(beginarrayccccc
    -1&1&-1&1&1\
    1&0&-1&-sqrt3&sqrt3\
    0&-1&0&2&2\
    -1&0&1&-sqrt3&sqrt3\
    1&1&1&1&1\
    endarray
    right)$$

    So, we can compute $A^999=PD^999P^-1$ whose entries will be a linear combination of $(-1)^999, (1)^999, (-sqrt3)^999,(sqrt3)^999$.






    share|cite|improve this answer











    $endgroup$



    Define $n_i=2i-1$ (so a bijection between 1,2,3,4,5 with 1,3,5,7,9).
    Consider the 5x5 matrix $A=(a_i,j)$ with $a_i,j=1$ if $n_i$ and $n_j$ differ by 2 and $a_i,j=0$ otherwise. Then, the number of positive integers with "m" digits satisfying your properties is the sum of entries of $A^m-1$. So you want to find the sum of entries of $A^999$. I don't know if this is easy to compute without computers.



    Edit:
    We have $$A=left(beginarrayccccc
    0&1&0&0&0\
    1&0&1&0&0\
    0&1&0&1&0\
    0&0&1&0&1\
    0&0&0&1&0\
    endarray
    right)$$

    So, thanks to @Mike's comment, it shouldn't be difficult to find the entries of $A^999$ we have that $A=PDP^-1$ with



    $$D=left(beginarrayccccc
    -1&0&0&0&0\
    0&0&0&0&0\
    0&0&1&0&0\
    0&0&0&-sqrt3&0\
    0&0&0&0&sqrt3\
    endarray
    right)$$



    $$P=left(beginarrayccccc
    -1&1&-1&1&1\
    1&0&-1&-sqrt3&sqrt3\
    0&-1&0&2&2\
    -1&0&1&-sqrt3&sqrt3\
    1&1&1&1&1\
    endarray
    right)$$

    So, we can compute $A^999=PD^999P^-1$ whose entries will be a linear combination of $(-1)^999, (1)^999, (-sqrt3)^999,(sqrt3)^999$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 1 hour ago

























    answered 3 hours ago









    Julian MejiaJulian Mejia

    64229




    64229







    • 1




      $begingroup$
      It shouldn't be too bad to diagonalize $A$. The characteristic polynomial is $lambda^5-4lambda^3+3lambda=lambda(lambda^2-1)(lambda^2-3)$, etc.
      $endgroup$
      – Mike Earnest
      3 hours ago












    • 1




      $begingroup$
      It shouldn't be too bad to diagonalize $A$. The characteristic polynomial is $lambda^5-4lambda^3+3lambda=lambda(lambda^2-1)(lambda^2-3)$, etc.
      $endgroup$
      – Mike Earnest
      3 hours ago







    1




    1




    $begingroup$
    It shouldn't be too bad to diagonalize $A$. The characteristic polynomial is $lambda^5-4lambda^3+3lambda=lambda(lambda^2-1)(lambda^2-3)$, etc.
    $endgroup$
    – Mike Earnest
    3 hours ago




    $begingroup$
    It shouldn't be too bad to diagonalize $A$. The characteristic polynomial is $lambda^5-4lambda^3+3lambda=lambda(lambda^2-1)(lambda^2-3)$, etc.
    $endgroup$
    – Mike Earnest
    3 hours ago











    1












    $begingroup$

    Here is a OCaml program that computes the number of numbers in term of the size of the number:



    type 'a stream= Eos| StrCons of 'a * (unit-> 'a stream)


    let hdStr (s: 'a stream) : 'a =
    match s with
    | Eos -> failwith "headless stream"
    | StrCons (x,_) -> x;;

    let tlStr (s : 'a stream) : 'a stream =
    match s with
    | Eos -> failwith "empty stream"
    | StrCons (x, t) -> t ();;



    let rec listify (s : 'a stream) (n: int) : 'a list =
    if n <= 0 then []
    else
    match s with
    | Eos -> []
    | _ -> (hdStr s) :: listify (tlStr s) (n - 1);;

    let rec howmanynumber start step=
    if step = 0 then 1 else
    match start with
    |1->howmanynumber 3 (step-1)
    |3->howmanynumber 1 (step-1) + howmanynumber 5 (step-1)
    |5->howmanynumber 3 (step-1) + howmanynumber 7 (step-1)
    |7->howmanynumber 5 (step-1) + howmanynumber 9 (step-1)
    |9->howmanynumber 7 (step-1)
    |_->failwith "exception error"



    let count n=
    (howmanynumber 1 n)+(howmanynumber 3 n)+(howmanynumber 5 n)+(howmanynumber 7 n)+(howmanynumber 9 n)

    let rec thisseq n = StrCons(count n , fun ()-> thisseq (n+1))

    let result = thisseq 1


    So Based on @Julian solution, the answer is the sum of entries of



    $beginbmatrix
    0 & 1 & 0 & 0 & 0 \
    1 & 0 & 1 & 0 & 0 \
    0 & 1 & 0 & 1 & 0 \
    0 & 0 & 1 & 0 & 1\
    0 & 0 & 0 & 1 & 0 \
    endbmatrix^999 * beginbmatrix
    1 \
    1 \
    1 \
    1 \
    1 \
    endbmatrix$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Thank you! But it was supposed to be a mathematical proof, since we are on math.stackexchange. Thank you for your effort though!
      $endgroup$
      – furfur
      3 hours ago















    1












    $begingroup$

    Here is a OCaml program that computes the number of numbers in term of the size of the number:



    type 'a stream= Eos| StrCons of 'a * (unit-> 'a stream)


    let hdStr (s: 'a stream) : 'a =
    match s with
    | Eos -> failwith "headless stream"
    | StrCons (x,_) -> x;;

    let tlStr (s : 'a stream) : 'a stream =
    match s with
    | Eos -> failwith "empty stream"
    | StrCons (x, t) -> t ();;



    let rec listify (s : 'a stream) (n: int) : 'a list =
    if n <= 0 then []
    else
    match s with
    | Eos -> []
    | _ -> (hdStr s) :: listify (tlStr s) (n - 1);;

    let rec howmanynumber start step=
    if step = 0 then 1 else
    match start with
    |1->howmanynumber 3 (step-1)
    |3->howmanynumber 1 (step-1) + howmanynumber 5 (step-1)
    |5->howmanynumber 3 (step-1) + howmanynumber 7 (step-1)
    |7->howmanynumber 5 (step-1) + howmanynumber 9 (step-1)
    |9->howmanynumber 7 (step-1)
    |_->failwith "exception error"



    let count n=
    (howmanynumber 1 n)+(howmanynumber 3 n)+(howmanynumber 5 n)+(howmanynumber 7 n)+(howmanynumber 9 n)

    let rec thisseq n = StrCons(count n , fun ()-> thisseq (n+1))

    let result = thisseq 1


    So Based on @Julian solution, the answer is the sum of entries of



    $beginbmatrix
    0 & 1 & 0 & 0 & 0 \
    1 & 0 & 1 & 0 & 0 \
    0 & 1 & 0 & 1 & 0 \
    0 & 0 & 1 & 0 & 1\
    0 & 0 & 0 & 1 & 0 \
    endbmatrix^999 * beginbmatrix
    1 \
    1 \
    1 \
    1 \
    1 \
    endbmatrix$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Thank you! But it was supposed to be a mathematical proof, since we are on math.stackexchange. Thank you for your effort though!
      $endgroup$
      – furfur
      3 hours ago













    1












    1








    1





    $begingroup$

    Here is a OCaml program that computes the number of numbers in term of the size of the number:



    type 'a stream= Eos| StrCons of 'a * (unit-> 'a stream)


    let hdStr (s: 'a stream) : 'a =
    match s with
    | Eos -> failwith "headless stream"
    | StrCons (x,_) -> x;;

    let tlStr (s : 'a stream) : 'a stream =
    match s with
    | Eos -> failwith "empty stream"
    | StrCons (x, t) -> t ();;



    let rec listify (s : 'a stream) (n: int) : 'a list =
    if n <= 0 then []
    else
    match s with
    | Eos -> []
    | _ -> (hdStr s) :: listify (tlStr s) (n - 1);;

    let rec howmanynumber start step=
    if step = 0 then 1 else
    match start with
    |1->howmanynumber 3 (step-1)
    |3->howmanynumber 1 (step-1) + howmanynumber 5 (step-1)
    |5->howmanynumber 3 (step-1) + howmanynumber 7 (step-1)
    |7->howmanynumber 5 (step-1) + howmanynumber 9 (step-1)
    |9->howmanynumber 7 (step-1)
    |_->failwith "exception error"



    let count n=
    (howmanynumber 1 n)+(howmanynumber 3 n)+(howmanynumber 5 n)+(howmanynumber 7 n)+(howmanynumber 9 n)

    let rec thisseq n = StrCons(count n , fun ()-> thisseq (n+1))

    let result = thisseq 1


    So Based on @Julian solution, the answer is the sum of entries of



    $beginbmatrix
    0 & 1 & 0 & 0 & 0 \
    1 & 0 & 1 & 0 & 0 \
    0 & 1 & 0 & 1 & 0 \
    0 & 0 & 1 & 0 & 1\
    0 & 0 & 0 & 1 & 0 \
    endbmatrix^999 * beginbmatrix
    1 \
    1 \
    1 \
    1 \
    1 \
    endbmatrix$






    share|cite|improve this answer











    $endgroup$



    Here is a OCaml program that computes the number of numbers in term of the size of the number:



    type 'a stream= Eos| StrCons of 'a * (unit-> 'a stream)


    let hdStr (s: 'a stream) : 'a =
    match s with
    | Eos -> failwith "headless stream"
    | StrCons (x,_) -> x;;

    let tlStr (s : 'a stream) : 'a stream =
    match s with
    | Eos -> failwith "empty stream"
    | StrCons (x, t) -> t ();;



    let rec listify (s : 'a stream) (n: int) : 'a list =
    if n <= 0 then []
    else
    match s with
    | Eos -> []
    | _ -> (hdStr s) :: listify (tlStr s) (n - 1);;

    let rec howmanynumber start step=
    if step = 0 then 1 else
    match start with
    |1->howmanynumber 3 (step-1)
    |3->howmanynumber 1 (step-1) + howmanynumber 5 (step-1)
    |5->howmanynumber 3 (step-1) + howmanynumber 7 (step-1)
    |7->howmanynumber 5 (step-1) + howmanynumber 9 (step-1)
    |9->howmanynumber 7 (step-1)
    |_->failwith "exception error"



    let count n=
    (howmanynumber 1 n)+(howmanynumber 3 n)+(howmanynumber 5 n)+(howmanynumber 7 n)+(howmanynumber 9 n)

    let rec thisseq n = StrCons(count n , fun ()-> thisseq (n+1))

    let result = thisseq 1


    So Based on @Julian solution, the answer is the sum of entries of



    $beginbmatrix
    0 & 1 & 0 & 0 & 0 \
    1 & 0 & 1 & 0 & 0 \
    0 & 1 & 0 & 1 & 0 \
    0 & 0 & 1 & 0 & 1\
    0 & 0 & 0 & 1 & 0 \
    endbmatrix^999 * beginbmatrix
    1 \
    1 \
    1 \
    1 \
    1 \
    endbmatrix$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 3 hours ago

























    answered 4 hours ago









    mathpadawanmathpadawan

    2,175522




    2,175522











    • $begingroup$
      Thank you! But it was supposed to be a mathematical proof, since we are on math.stackexchange. Thank you for your effort though!
      $endgroup$
      – furfur
      3 hours ago
















    • $begingroup$
      Thank you! But it was supposed to be a mathematical proof, since we are on math.stackexchange. Thank you for your effort though!
      $endgroup$
      – furfur
      3 hours ago















    $begingroup$
    Thank you! But it was supposed to be a mathematical proof, since we are on math.stackexchange. Thank you for your effort though!
    $endgroup$
    – furfur
    3 hours ago




    $begingroup$
    Thank you! But it was supposed to be a mathematical proof, since we are on math.stackexchange. Thank you for your effort though!
    $endgroup$
    – furfur
    3 hours ago











    1












    $begingroup$

    The text was too lengthy for a comment and aims on finalizing the previous answers and comments, which boil down to a very simple final answer for $nge2$: $$a_n=begincaseshphantom18cdot 3^fracn-22,& ntext even,\14 cdot 3^fracn-32,& ntext odd.endcasestag1$$



    The most simple way to prove $(1)$ is to count directly the number of ways for the cases $n=2,3,4,5$ obtaining $a_n=8,14,24,42$, and then proceed by induction applying the recurrence relation suggested by Mike Earnest on the base of the characteristic polynomial of the matrix introduced by Julian Mejia:
    $$
    a_n=4a_n-2-3a_n-4.tag2
    $$



    In fact the simplicity of the answer suggests that there is possibly a simpler way to prove $(2)$ or even directly $(1)$.






    share|cite|improve this answer











    $endgroup$

















      1












      $begingroup$

      The text was too lengthy for a comment and aims on finalizing the previous answers and comments, which boil down to a very simple final answer for $nge2$: $$a_n=begincaseshphantom18cdot 3^fracn-22,& ntext even,\14 cdot 3^fracn-32,& ntext odd.endcasestag1$$



      The most simple way to prove $(1)$ is to count directly the number of ways for the cases $n=2,3,4,5$ obtaining $a_n=8,14,24,42$, and then proceed by induction applying the recurrence relation suggested by Mike Earnest on the base of the characteristic polynomial of the matrix introduced by Julian Mejia:
      $$
      a_n=4a_n-2-3a_n-4.tag2
      $$



      In fact the simplicity of the answer suggests that there is possibly a simpler way to prove $(2)$ or even directly $(1)$.






      share|cite|improve this answer











      $endgroup$















        1












        1








        1





        $begingroup$

        The text was too lengthy for a comment and aims on finalizing the previous answers and comments, which boil down to a very simple final answer for $nge2$: $$a_n=begincaseshphantom18cdot 3^fracn-22,& ntext even,\14 cdot 3^fracn-32,& ntext odd.endcasestag1$$



        The most simple way to prove $(1)$ is to count directly the number of ways for the cases $n=2,3,4,5$ obtaining $a_n=8,14,24,42$, and then proceed by induction applying the recurrence relation suggested by Mike Earnest on the base of the characteristic polynomial of the matrix introduced by Julian Mejia:
        $$
        a_n=4a_n-2-3a_n-4.tag2
        $$



        In fact the simplicity of the answer suggests that there is possibly a simpler way to prove $(2)$ or even directly $(1)$.






        share|cite|improve this answer











        $endgroup$



        The text was too lengthy for a comment and aims on finalizing the previous answers and comments, which boil down to a very simple final answer for $nge2$: $$a_n=begincaseshphantom18cdot 3^fracn-22,& ntext even,\14 cdot 3^fracn-32,& ntext odd.endcasestag1$$



        The most simple way to prove $(1)$ is to count directly the number of ways for the cases $n=2,3,4,5$ obtaining $a_n=8,14,24,42$, and then proceed by induction applying the recurrence relation suggested by Mike Earnest on the base of the characteristic polynomial of the matrix introduced by Julian Mejia:
        $$
        a_n=4a_n-2-3a_n-4.tag2
        $$



        In fact the simplicity of the answer suggests that there is possibly a simpler way to prove $(2)$ or even directly $(1)$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 4 mins ago

























        answered 3 hours ago









        useruser

        6,69011031




        6,69011031



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3192709%2fcombinatorics-problem-on-counting%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Dapidodigma demeter Subspecies | Notae | Tabula navigationisDapidodigmaAfrotropical Butterflies: Lycaenidae - Subtribe IolainaAmplifica

            Constantinus Vanšenkin Nexus externi | Tabula navigationisБольшая российская энциклопедияAmplifica

            Gaius Norbanus Flaccus (consul 38 a.C.n.) Index De gente | De cursu honorum | Notae | Fontes | Si vis plura legere | Tabula navigationisHic legere potes