Theorema Posner–Robinson Expositio | Demonstratio | Significatio | Tabula navigationis

Theoremata mathematicaLogica


theoriae facultatis calculandigradibus Turing




Theorema Posner–Robinson est theorema theoriae facultatis calculandi de gradibus Turing.



Expositio |


Theorema. Sit Bdisplaystyle B copia numerorum naturalium, quae calculari non potest. (Id est B≰T0displaystyle Bnot leq _Tmathbf 0 .) Tum est copia Gdisplaystyle G ut
G⊕B≡TG′displaystyle Goplus Bequiv _TG^prime .



Demonstratio |


Sit Bdisplaystyle B. Volumus facere series ((Φp,X¯p))p∈ωdisplaystyle ((Phi _p,bar X_p))_pin omega , quorum:



  • Φpdisplaystyle Phi _p est copia finita rerum sicut (a,b,X)displaystyle (a,b,X), in qua a,b∈ωdisplaystyle a,bin omega , X∈2<ωdisplaystyle Xin 2^<omega . Φp(X)displaystyle Phi _p(X) est functio ab 2ωdisplaystyle 2^omega in 2ωdisplaystyle 2^omega , ut Φp(X)(a)=bdisplaystyle Phi _p(X)(a)=b si et tantum si (a,b,X)∈Φpdisplaystyle (a,b,X)in Phi _p,


  • X¯pdisplaystyle bar X_p est copia finita rerum X∈2ωdisplaystyle Xin 2^omega ,

in qua serie, si q>pdisplaystyle q>p:


  • (a) Cuique (xq,yq,η)∈Φq∖Φpdisplaystyle (x_q,y_q,eta )in Phi _qbackslash Phi _p et (xp,yp,σ)∈Φpdisplaystyle (x_p,y_p,sigma )in Phi _p, |η|>|σ|displaystyle vert eta vert >vert sigma vert ,

  • (b) Φp⊆Φqdisplaystyle Phi _psubseteq Phi _q et X¯p⊆X¯qdisplaystyle bar X_psubseteq bar X_q,

  • (c) Cuique X∈X¯pdisplaystyle Xin bar X_p, Φq(X)=Φp(X)displaystyle Phi _q(X)=Phi _p(X).

ita ut, si Φ:=⋃p∈ωΦpdisplaystyle Phi :=bigcup _pin omega Phi _p, tum Φ(B)=Φ′displaystyle Phi (B)=Phi ^prime . Sit Φ0=X¯0=∅displaystyle Phi _0=bar X_0=varnothing . Si habemus (Φp,X¯p)displaystyle (Phi _p,bar X_p), sic agamus ut (Φp+1,X¯p+1)displaystyle (Phi _p+1,bar X_p+1) faciamus:


  1. Sit ∃nθp(n,Z|n)displaystyle exists n,theta _p(n,Zvert n) formula numero pdisplaystyle p. Si nancisci possumus copiam Ψ⊇Φdisplaystyle Psi supseteq Phi quae (a) satisfaciat, ut cuique X∈X¯p∪Bdisplaystyle Xin bar X_pcup B, Ψ(X)=Φ(X)displaystyle Psi (X)=Phi (X), tum sit Φp+1:=Ψ∪(p,1,B)displaystyle Phi _p+1:=Psi cup (p,1,B) et X¯p+1:=X¯pdisplaystyle bar X_p+1:=bar X_p.

  2. Sin nancisci non possumus Ψdisplaystyle Psi , tum sciamus cuique copiae Ψ⊆Φdisplaystyle Psi subseteq Phi quae (a) satisfaciat esse X∈X¯p∪Bdisplaystyle Xin bar X_pcup B ut Ψ(X)≠Φ(X)displaystyle Psi (X)neq Phi (X). Sit igitur collectio Zdisplaystyle mathcal Z ut:

Z¯∈Z⟺Sit Ψ⊇Φ quae (a) satisfaciat, tum si ∃n<|Ψ|θp(n,Ψ|n), tum ∃(a,b,X)∈Ψ∖Φ, ut X∈Z¯displaystyle bar Zin mathcal Ziff textSit Psi supseteq Phi text quae (a) satisfaciat, tum si exists n<vert Psi vert ,theta _p(n,Psi vert n)text, tum exists (a,b,X)in Psi backslash Phi text, ut Xin bar Z

Sed scilicet X¯p∪B∈Zdisplaystyle bar X_pcup Bin mathcal Z, ergo Z≠∅displaystyle mathcal Zneq varnothing . Lemma habemus:

Lemma. (de conis vitandis) Sit collectio non vacua Adisplaystyle mathcal A ut X∈A⟺∀nθ(n,X|n)displaystyle Xin mathcal Aiff forall n,theta (n,Xvert n), in quo θ∈Δ0displaystyle theta in Delta _0 (vide pagina de hierarchia arithmetica). Sit D≰T0displaystyle Dnot leq _Tmathbf 0 . Tum est G∈Adisplaystyle Gin mathcal A ut G≱TDdisplaystyle Gnot geq _TD.

Ergo, sit D¯=Bdisplaystyle bar D=B, tum est Z¯∈Zdisplaystyle bar Zin mathcal Z ut Z¯≱TBdisplaystyle bar Znot geq _TB, id est, B∉Z¯displaystyle Bnot in bar Z. Igitur sit Φp+1=Φp∪(p,0,B)displaystyle Phi _p+1=Phi _pcup (p,0,B) et X¯p+1:=X¯p∪Z¯displaystyle bar X_p+1:=bar X_pcup bar Z.

Nunc tota serie facta habemus Φdisplaystyle Phi ut Φ(B)=Φ′displaystyle Phi (B)=Phi ^prime . Ergo Φ⊕B≡TΦ′displaystyle Phi oplus Bequiv _TPhi ^prime , quod erat demonstrandum.



Significatio |


Hoc theorema naturam omnium copiarum quae calculari non possunt patefacit. Si Bdisplaystyle B est copia quae calculari non potest, tum nancisci possumus copia Gdisplaystyle G, ut differentia inter Gdisplaystyle G et G′displaystyle G^prime sit Bdisplaystyle B.







Popular posts from this blog

Garniga Index Insigne | Geographia | Ethnográphia | Oeconomia | Historia | Clari cives | Urbis administratio | Ecclesia Catholica Romana | Fractiones, vici et loci in municipio | Municipia finitima | Nexus interni Nexus externi | Pinacotheca | Notae | Tabula navigationis° ′ ″ Sept., ° ′ ″ Ort.Pagina interretialisPagina officialisTovazzi Giangrisostomo OFM - NOTITIA ECCLESIARUM TRIDENTINAE CIVITATIS AC DIOECESIS Clerus et Diocesis Tridentina exeunte anno 1826Amplifica

Saint-André (Pyrenaeus Orientalis) Nexus interni Nexus externi | Tabula navigationisOpenStreetMapGeoNames66168De hoc commune apud cassini.ehess.frHuius communis pagina interretialisAmplifica

Is there a way to get `mathscr' with lower case letters in pdfLaTeX?mathscr (LaTeX or XeLaTeX)Blackboard bold characterssome greek letters disappear from PDFs included with includegraphicsBeamer 3.30 with helvet - Problem with upper-case Greekpoor man's condensed with pdflatexlower case calligraphic letters in mathdesignHeadings with Trajan fontA calligraphic font with small (lowercase) lettersHow to use mathbbol only for greek and lowercaseA calligraphic font with lowercase letters, using mathscr style and not boldedIs there a way to write slanted non-italic (especially bold/bb lowercase) letters in math mode?