Definite integral giving negative value as a result?Why do I get a negative value for this integral?Solving a definite integralReal integral giving a complex resultProgression from indefinite integral to definite integral - $int_0^2pifrac15-3cos x dx$Calculation of definite integralWithout calculating the integral decide if integral is positive or negative / which integral is bigger?Definite integral of absolute value function?Variable substitution in definite integralDefinite integral over singularityInner Product, Definite Integral

Is it possible to run Internet Explorer on OS X El Capitan?

What defenses are there against being summoned by the Gate spell?

Replacing matching entries in one column of a file by another column from a different file

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

Did Shadowfax go to Valinor?

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

Does detail obscure or enhance action?

Are the number of citations and number of published articles the most important criteria for a tenure promotion?

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

Which country benefited the most from UN Security Council vetoes?

What typically incentivizes a professor to change jobs to a lower ranking university?

Why does Kotter return in Welcome Back Kotter?

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

Do infinite dimensional systems make sense?

What are these boxed doors outside store fronts in New York?

Is it unprofessional to ask if a job posting on GlassDoor is real?

Alternative to sending password over mail?

How old can references or sources in a thesis be?

Can a vampire attack twice with their claws using Multiattack?

What's the output of a record needle playing an out-of-speed record

Are astronomers waiting to see something in an image from a gravitational lens that they've already seen in an adjacent image?

What does "Puller Prush Person" mean?

Today is the Center

How can I prevent hyper evolved versions of regular creatures from wiping out their cousins?



Definite integral giving negative value as a result?


Why do I get a negative value for this integral?Solving a definite integralReal integral giving a complex resultProgression from indefinite integral to definite integral - $int_0^2pifrac15-3cos x dx$Calculation of definite integralWithout calculating the integral decide if integral is positive or negative / which integral is bigger?Definite integral of absolute value function?Variable substitution in definite integralDefinite integral over singularityInner Product, Definite Integral













4












$begingroup$


I want to calculate definite integral



$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$



$$int frac1x^2e^frac1x dx=-e^frac1x+C$$



so:



$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$



which is a negative value. I believe it should be positive.



What went wrong in the process?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    4 hours ago






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    4 hours ago











  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
    $endgroup$
    – weno
    4 hours ago







  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    4 hours ago










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    4 hours ago















4












$begingroup$


I want to calculate definite integral



$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$



$$int frac1x^2e^frac1x dx=-e^frac1x+C$$



so:



$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$



which is a negative value. I believe it should be positive.



What went wrong in the process?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    4 hours ago






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    4 hours ago











  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
    $endgroup$
    – weno
    4 hours ago







  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    4 hours ago










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    4 hours ago













4












4








4





$begingroup$


I want to calculate definite integral



$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$



$$int frac1x^2e^frac1x dx=-e^frac1x+C$$



so:



$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$



which is a negative value. I believe it should be positive.



What went wrong in the process?










share|cite|improve this question











$endgroup$




I want to calculate definite integral



$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$



$$int frac1x^2e^frac1x dx=-e^frac1x+C$$



so:



$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$



which is a negative value. I believe it should be positive.



What went wrong in the process?







calculus integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago









Eevee Trainer

9,92731740




9,92731740










asked 4 hours ago









wenoweno

39611




39611







  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    4 hours ago






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    4 hours ago











  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
    $endgroup$
    – weno
    4 hours ago







  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    4 hours ago










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    4 hours ago












  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    4 hours ago






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    4 hours ago











  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
    $endgroup$
    – weno
    4 hours ago







  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    4 hours ago










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    4 hours ago







2




2




$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago




$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago




2




2




$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago





$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago













$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
4 hours ago





$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
4 hours ago





5




5




$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago




$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago












$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago




$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



$$int_a^b f(x)dx = F(b) - F(a)$$



when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



    $$int_a^b f(x)dx = F(b) - F(a)$$



    when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



      $$int_a^b f(x)dx = F(b) - F(a)$$



      when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



        $$int_a^b f(x)dx = F(b) - F(a)$$



        when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






        share|cite|improve this answer









        $endgroup$



        What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



        $$int_a^b f(x)dx = F(b) - F(a)$$



        when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 4 hours ago









        Eevee TrainerEevee Trainer

        9,92731740




        9,92731740



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Dapidodigma demeter Subspecies | Notae | Tabula navigationisDapidodigmaAfrotropical Butterflies: Lycaenidae - Subtribe IolainaAmplifica

            Constantinus Vanšenkin Nexus externi | Tabula navigationisБольшая российская энциклопедияAmplifica

            Gaius Norbanus Flaccus (consul 38 a.C.n.) Index De gente | De cursu honorum | Notae | Fontes | Si vis plura legere | Tabula navigationisHic legere potes