Eigenvalues of $2$ symmetric $4times 4$ matrices: why is one negative of the other?If the eigenvalues are distinct then the eigenspaces are all one dimensionalCongruence of invertible skew symmetric matricesEigenvalues of a general block hermitian matrixEigenvalues of Overlapping block diagonal matricesHow to find a symmetric matrix that transforms one ellipsoid to another?The matrix of an endomorphismA conjecture regarding the eigenvalues of real symmetric matricesProve that the span of $M_1, M_2, M_3$ is the set of all symmetric $2times2$ matrices.Looking for properties of, or formulae for eigenvalues of a symmetric matrix reminiscent of Toeplitz matricesDo hermitian matrices commute when they occupy they same elements but have different values?
Do VLANs within a subnet need to have their own subnet for router on a stick?
How can bays and straits be determined in a procedurally generated map?
Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?
Smoothness of finite-dimensional functional calculus
Why Is Death Allowed In the Matrix?
In Japanese, what’s the difference between “Tonari ni” (となりに) and “Tsugi” (つぎ)? When would you use one over the other?
What are the differences between the usage of 'it' and 'they'?
Mathematical cryptic clues
Can I ask the recruiters in my resume to put the reason why I am rejected?
The use of multiple foreign keys on same column in SQL Server
How old can references or sources in a thesis be?
Fencing style for blades that can attack from a distance
An academic/student plagiarism
Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?
Why can't I see bouncing of a switch on an oscilloscope?
Why are electrically insulating heatsinks so rare? Is it just cost?
strToHex ( string to its hex representation as string)
Did Shadowfax go to Valinor?
LaTeX closing $ signs makes cursor jump
Can I make popcorn with any corn?
What's the point of deactivating Num Lock on login screens?
Which models of the Boeing 737 are still in production?
Risk of getting Chronic Wasting Disease (CWD) in the United States?
Font hinting is lost in Chrome-like browsers (for some languages )
Eigenvalues of $2$ symmetric $4times 4$ matrices: why is one negative of the other?
If the eigenvalues are distinct then the eigenspaces are all one dimensionalCongruence of invertible skew symmetric matricesEigenvalues of a general block hermitian matrixEigenvalues of Overlapping block diagonal matricesHow to find a symmetric matrix that transforms one ellipsoid to another?The matrix of an endomorphismA conjecture regarding the eigenvalues of real symmetric matricesProve that the span of $M_1, M_2, M_3$ is the set of all symmetric $2times2$ matrices.Looking for properties of, or formulae for eigenvalues of a symmetric matrix reminiscent of Toeplitz matricesDo hermitian matrices commute when they occupy they same elements but have different values?
$begingroup$
Consider the following symmetric matrix:
$$
M_0 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
and a very similar matrix:
$$
M_1 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?
I also tried playing around with the values a little; for example, if the center block is $beginpmatrix1 & pm 4 \ pm 4 & 1endpmatrix$ instead, then they do not share the same eigenvalues.
Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.
$$
M_2 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & e^ix & 3 \
2 & e^-ix & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.
Thanks.
linear-algebra matrices eigenvalues-eigenvectors symmetric-matrices
$endgroup$
add a comment |
$begingroup$
Consider the following symmetric matrix:
$$
M_0 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
and a very similar matrix:
$$
M_1 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?
I also tried playing around with the values a little; for example, if the center block is $beginpmatrix1 & pm 4 \ pm 4 & 1endpmatrix$ instead, then they do not share the same eigenvalues.
Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.
$$
M_2 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & e^ix & 3 \
2 & e^-ix & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.
Thanks.
linear-algebra matrices eigenvalues-eigenvectors symmetric-matrices
$endgroup$
$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
30 mins ago
$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
28 mins ago
1
$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
14 mins ago
2
$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
14 mins ago
$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
12 mins ago
add a comment |
$begingroup$
Consider the following symmetric matrix:
$$
M_0 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
and a very similar matrix:
$$
M_1 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?
I also tried playing around with the values a little; for example, if the center block is $beginpmatrix1 & pm 4 \ pm 4 & 1endpmatrix$ instead, then they do not share the same eigenvalues.
Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.
$$
M_2 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & e^ix & 3 \
2 & e^-ix & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.
Thanks.
linear-algebra matrices eigenvalues-eigenvectors symmetric-matrices
$endgroup$
Consider the following symmetric matrix:
$$
M_0 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
and a very similar matrix:
$$
M_1 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?
I also tried playing around with the values a little; for example, if the center block is $beginpmatrix1 & pm 4 \ pm 4 & 1endpmatrix$ instead, then they do not share the same eigenvalues.
Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.
$$
M_2 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & e^ix & 3 \
2 & e^-ix & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.
Thanks.
linear-algebra matrices eigenvalues-eigenvectors symmetric-matrices
linear-algebra matrices eigenvalues-eigenvectors symmetric-matrices
edited 1 min ago
YuiTo Cheng
2,2734937
2,2734937
asked 1 hour ago
TroyTroy
4231519
4231519
$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
30 mins ago
$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
28 mins ago
1
$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
14 mins ago
2
$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
14 mins ago
$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
12 mins ago
add a comment |
$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
30 mins ago
$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
28 mins ago
1
$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
14 mins ago
2
$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
14 mins ago
$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
12 mins ago
$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
30 mins ago
$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
30 mins ago
$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
28 mins ago
$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
28 mins ago
1
1
$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
14 mins ago
$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
14 mins ago
2
2
$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
14 mins ago
$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
14 mins ago
$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
12 mins ago
$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
12 mins ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$
and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&-_42&a_43&-a_44$$
are conjugate, for precisely the same reason.
$endgroup$
1
$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
6 mins ago
$begingroup$
okay, this is amazing..
$endgroup$
– Troy
11 secs ago
add a comment |
$begingroup$
This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.
Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$
Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.
For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*
And the cases of the third and fourth rows are obviously similar.
$endgroup$
$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
14 mins ago
$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
11 mins ago
$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
9 mins ago
add a comment |
$begingroup$
I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.
Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*
Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*
This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.
Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*
A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.
$endgroup$
$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
18 mins ago
$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
15 mins ago
$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
11 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177640%2feigenvalues-of-2-symmetric-4-times-4-matrices-why-is-one-negative-of-the-ot%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$
and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&-_42&a_43&-a_44$$
are conjugate, for precisely the same reason.
$endgroup$
1
$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
6 mins ago
$begingroup$
okay, this is amazing..
$endgroup$
– Troy
11 secs ago
add a comment |
$begingroup$
$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$
and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&-_42&a_43&-a_44$$
are conjugate, for precisely the same reason.
$endgroup$
1
$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
6 mins ago
$begingroup$
okay, this is amazing..
$endgroup$
– Troy
11 secs ago
add a comment |
$begingroup$
$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$
and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&-_42&a_43&-a_44$$
are conjugate, for precisely the same reason.
$endgroup$
$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$
and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&-_42&a_43&-a_44$$
are conjugate, for precisely the same reason.
answered 9 mins ago
Lord Shark the UnknownLord Shark the Unknown
108k1162135
108k1162135
1
$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
6 mins ago
$begingroup$
okay, this is amazing..
$endgroup$
– Troy
11 secs ago
add a comment |
1
$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
6 mins ago
$begingroup$
okay, this is amazing..
$endgroup$
– Troy
11 secs ago
1
1
$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
6 mins ago
$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
6 mins ago
$begingroup$
okay, this is amazing..
$endgroup$
– Troy
11 secs ago
$begingroup$
okay, this is amazing..
$endgroup$
– Troy
11 secs ago
add a comment |
$begingroup$
This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.
Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$
Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.
For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*
And the cases of the third and fourth rows are obviously similar.
$endgroup$
$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
14 mins ago
$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
11 mins ago
$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
9 mins ago
add a comment |
$begingroup$
This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.
Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$
Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.
For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*
And the cases of the third and fourth rows are obviously similar.
$endgroup$
$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
14 mins ago
$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
11 mins ago
$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
9 mins ago
add a comment |
$begingroup$
This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.
Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$
Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.
For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*
And the cases of the third and fourth rows are obviously similar.
$endgroup$
This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.
Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$
Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.
For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*
And the cases of the third and fourth rows are obviously similar.
edited 3 mins ago
answered 18 mins ago
M. VinayM. Vinay
7,33322136
7,33322136
$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
14 mins ago
$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
11 mins ago
$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
9 mins ago
add a comment |
$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
14 mins ago
$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
11 mins ago
$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
9 mins ago
$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
14 mins ago
$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
14 mins ago
$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
11 mins ago
$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
11 mins ago
$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
9 mins ago
$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
9 mins ago
add a comment |
$begingroup$
I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.
Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*
Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*
This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.
Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*
A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.
$endgroup$
$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
18 mins ago
$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
15 mins ago
$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
11 mins ago
add a comment |
$begingroup$
I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.
Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*
Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*
This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.
Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*
A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.
$endgroup$
$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
18 mins ago
$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
15 mins ago
$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
11 mins ago
add a comment |
$begingroup$
I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.
Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*
Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*
This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.
Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*
A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.
$endgroup$
I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.
Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*
Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*
This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.
Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*
A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.
edited 17 mins ago
answered 26 mins ago
Brian FitzpatrickBrian Fitzpatrick
21.8k42959
21.8k42959
$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
18 mins ago
$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
15 mins ago
$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
11 mins ago
add a comment |
$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
18 mins ago
$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
15 mins ago
$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
11 mins ago
$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
18 mins ago
$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
18 mins ago
$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
15 mins ago
$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
15 mins ago
$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
11 mins ago
$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
11 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177640%2feigenvalues-of-2-symmetric-4-times-4-matrices-why-is-one-negative-of-the-ot%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
30 mins ago
$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
28 mins ago
1
$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
14 mins ago
2
$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
14 mins ago
$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
12 mins ago