is the intersection of subgroups a subgroup of each subgroupA group with no proper non-trivial subgroupsSubgroups that are isomorphic to each other, and contain a common element are the same subgroupIf a group has no maximal subgroups then all elements are non-generators? Frattini subgroup characterizationLet $P$, $Q$ be two Sylow p-subgroups of $G$, is it true that $N_P(Q)=Qcap P$?Subgroups of $G=(mathbbZ_12,+)$join of pronormal subgroupsProperty of normally embedded subgroupsParity of order of intersection of cyclic and noncyclic subgroupsListing elements of the subgroups and generatorsIntersection of two subgroups
How does strength of boric acid solution increase in presence of salicylic acid?
What typically incentivizes a professor to change jobs to a lower ranking university?
Why do falling prices hurt debtors?
Animated Series: Alien black spider robot crashes on Earth
Font hinting is lost in Chrome-like browsers (for some languages )
How does one intimidate enemies without having the capacity for violence?
Minkowski space
Is it unprofessional to ask if a job posting on GlassDoor is real?
"to be prejudice towards/against someone" vs "to be prejudiced against/towards someone"
Approximately how much travel time was saved by the opening of the Suez Canal in 1869?
The use of multiple foreign keys on same column in SQL Server
Arthur Somervell: 1000 Exercises - Meaning of this notation
Modeling an IPv4 Address
Can I make popcorn with any corn?
How much RAM could one put in a typical 80386 setup?
What do the dots in this tr command do: tr .............A-Z A-ZA-Z <<< "JVPQBOV" (with 13 dots)
How is it possible to have an ability score that is less than 3?
What does it mean to describe someone as a butt steak?
A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?
Service Entrance Breakers Rain Shield
Do VLANs within a subnet need to have their own subnet for router on a stick?
What are the differences between the usage of 'it' and 'they'?
How to say job offer in Mandarin/Cantonese?
Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?
is the intersection of subgroups a subgroup of each subgroup
A group with no proper non-trivial subgroupsSubgroups that are isomorphic to each other, and contain a common element are the same subgroupIf a group has no maximal subgroups then all elements are non-generators? Frattini subgroup characterizationLet $P$, $Q$ be two Sylow p-subgroups of $G$, is it true that $N_P(Q)=Qcap P$?Subgroups of $G=(mathbbZ_12,+)$join of pronormal subgroupsProperty of normally embedded subgroupsParity of order of intersection of cyclic and noncyclic subgroupsListing elements of the subgroups and generatorsIntersection of two subgroups
$begingroup$
Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?
I am guessing this does not hold but why?
Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.
Much thanks in advance!
abstract-algebra group-theory
$endgroup$
add a comment |
$begingroup$
Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?
I am guessing this does not hold but why?
Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.
Much thanks in advance!
abstract-algebra group-theory
$endgroup$
add a comment |
$begingroup$
Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?
I am guessing this does not hold but why?
Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.
Much thanks in advance!
abstract-algebra group-theory
$endgroup$
Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?
I am guessing this does not hold but why?
Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.
Much thanks in advance!
abstract-algebra group-theory
abstract-algebra group-theory
edited 45 mins ago
Shaun
10.3k113686
10.3k113686
asked 6 hours ago
JustWanderingJustWandering
592
592
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:
Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:
$e in H$,
- if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,
- for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.
These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.
Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!
In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.
$endgroup$
add a comment |
$begingroup$
The subgroup test is:
$H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.
Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177593%2fis-the-intersection-of-subgroups-a-subgroup-of-each-subgroup%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:
Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:
$e in H$,
- if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,
- for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.
These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.
Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!
In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.
$endgroup$
add a comment |
$begingroup$
It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:
Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:
$e in H$,
- if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,
- for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.
These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.
Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!
In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.
$endgroup$
add a comment |
$begingroup$
It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:
Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:
$e in H$,
- if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,
- for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.
These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.
Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!
In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.
$endgroup$
It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:
Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:
$e in H$,
- if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,
- for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.
These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.
Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!
In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.
edited 5 hours ago
answered 6 hours ago
rolandcyprolandcyp
2,309422
2,309422
add a comment |
add a comment |
$begingroup$
The subgroup test is:
$H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.
Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.
$endgroup$
add a comment |
$begingroup$
The subgroup test is:
$H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.
Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.
$endgroup$
add a comment |
$begingroup$
The subgroup test is:
$H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.
Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.
$endgroup$
The subgroup test is:
$H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.
Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.
answered 3 hours ago
janmarqzjanmarqz
6,25741630
6,25741630
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177593%2fis-the-intersection-of-subgroups-a-subgroup-of-each-subgroup%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown