Why is this code so slow? The 2019 Stack Overflow Developer Survey Results Are InWhy is FindRoot initial value far from the specified one?Newton-Raphson Method and the Van der Waal Equation Coding questionWhat are the hidden specifications for FindRootHow can I resolve the insufficient memory to complete the computation problem for solving function with iterated variables?Why does this function inside FindRoot fail to evaluate?Very slow mathematica finite differencesManipulate+FindRoot+Plot3D very slow/crashAttacking a “Mathematica can't solve” problemErrors using FindRoot on slow numerical functionAvoiding a for loop to create a list

Worn-tile Scrabble

What do I do when my TA workload is more than expected?

Did any laptop computers have a built-in 5 1/4 inch floppy drive?

How to type a long/em dash `—`

Why not take a picture of a closer black hole?

What was the last CPU that did not have the x87 floating-point unit built in?

What is the motivation for a law requiring 2 parties to consent for recording a conversation

What can I do if neighbor is blocking my solar panels intentionally

How to notate time signature switching consistently every measure

How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?

Cooking pasta in a water boiler

Finding the area between two curves with Integrate

Are there any other methods to apply to solving simultaneous equations?

Why couldn't they take pictures of a closer black hole?

Output the Arecibo Message

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

How much of the clove should I use when using big garlic heads?

Keeping a retro style to sci-fi spaceships?

Pokemon Turn Based battle (Python)

How to translate "being like"?

Can withdrawing asylum be illegal?

What is the meaning of Triage in Cybersec world?

Getting crown tickets for Statue of Liberty

Why does the nucleus not repel itself?



Why is this code so slow?



The 2019 Stack Overflow Developer Survey Results Are InWhy is FindRoot initial value far from the specified one?Newton-Raphson Method and the Van der Waal Equation Coding questionWhat are the hidden specifications for FindRootHow can I resolve the insufficient memory to complete the computation problem for solving function with iterated variables?Why does this function inside FindRoot fail to evaluate?Very slow mathematica finite differencesManipulate+FindRoot+Plot3D very slow/crashAttacking a “Mathematica can't solve” problemErrors using FindRoot on slow numerical functionAvoiding a for loop to create a list










2












$begingroup$


This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



 Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1

A[r_] := A[r] =
Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s, r - s -
24*e*s^-1, r < s]
For[i = 2, i < 101,
i++, u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , x, 1.]; Print[u[i]]]









share|improve this question









$endgroup$
















    2












    $begingroup$


    This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



     Clear[A, r, x, s, e]
    s := 0.3405
    e := 1.6539*10^-21
    u[0] := 0.
    u[1] := 0.1

    A[r_] := A[r] =
    Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
    r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
    s [LessSlantEqual] r [LessSlantEqual] 2.5 s, r - s -
    24*e*s^-1, r < s]
    For[i = 2, i < 101,
    i++, u[i_] :=
    x /. FindRoot[
    u[i - 1] +
    1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
    0.9 A[x] == x , x, 1.]; Print[u[i]]]









    share|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



       Clear[A, r, x, s, e]
      s := 0.3405
      e := 1.6539*10^-21
      u[0] := 0.
      u[1] := 0.1

      A[r_] := A[r] =
      Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
      r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
      s [LessSlantEqual] r [LessSlantEqual] 2.5 s, r - s -
      24*e*s^-1, r < s]
      For[i = 2, i < 101,
      i++, u[i_] :=
      x /. FindRoot[
      u[i - 1] +
      1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
      0.9 A[x] == x , x, 1.]; Print[u[i]]]









      share|improve this question









      $endgroup$




      This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



       Clear[A, r, x, s, e]
      s := 0.3405
      e := 1.6539*10^-21
      u[0] := 0.
      u[1] := 0.1

      A[r_] := A[r] =
      Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
      r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
      s [LessSlantEqual] r [LessSlantEqual] 2.5 s, r - s -
      24*e*s^-1, r < s]
      For[i = 2, i < 101,
      i++, u[i_] :=
      x /. FindRoot[
      u[i - 1] +
      1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
      0.9 A[x] == x , x, 1.]; Print[u[i]]]






      equation-solving iteration






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 2 hours ago









      morapimorapi

      204




      204




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



          s = 0.3405;
          e = 1.6539*10^-21;
          u[0] = 0.;
          u[1] = 0.1;

          A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
          -48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
          r - s - 24*e*s^-1, r < s];

          u[i_] := u[i] = x /. FindRoot[
          u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

          Array[u, 100]



          0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
          0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
          1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
          0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
          0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
          0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
          0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
          0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
          0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
          0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
          0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
          0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
          0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
          0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
          0.554408, 0.56675




          (takes about 5 seconds)



          Alternatively, use



          Table[u[i], i, 1, 100]


          (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






          share|improve this answer











          $endgroup$












          • $begingroup$
            thank you very much. I really appreciate it.
            $endgroup$
            – morapi
            4 mins ago











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "387"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195054%2fwhy-is-this-code-so-slow%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



          s = 0.3405;
          e = 1.6539*10^-21;
          u[0] = 0.;
          u[1] = 0.1;

          A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
          -48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
          r - s - 24*e*s^-1, r < s];

          u[i_] := u[i] = x /. FindRoot[
          u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

          Array[u, 100]



          0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
          0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
          1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
          0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
          0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
          0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
          0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
          0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
          0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
          0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
          0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
          0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
          0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
          0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
          0.554408, 0.56675




          (takes about 5 seconds)



          Alternatively, use



          Table[u[i], i, 1, 100]


          (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






          share|improve this answer











          $endgroup$












          • $begingroup$
            thank you very much. I really appreciate it.
            $endgroup$
            – morapi
            4 mins ago















          5












          $begingroup$

          I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



          s = 0.3405;
          e = 1.6539*10^-21;
          u[0] = 0.;
          u[1] = 0.1;

          A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
          -48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
          r - s - 24*e*s^-1, r < s];

          u[i_] := u[i] = x /. FindRoot[
          u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

          Array[u, 100]



          0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
          0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
          1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
          0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
          0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
          0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
          0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
          0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
          0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
          0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
          0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
          0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
          0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
          0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
          0.554408, 0.56675




          (takes about 5 seconds)



          Alternatively, use



          Table[u[i], i, 1, 100]


          (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






          share|improve this answer











          $endgroup$












          • $begingroup$
            thank you very much. I really appreciate it.
            $endgroup$
            – morapi
            4 mins ago













          5












          5








          5





          $begingroup$

          I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



          s = 0.3405;
          e = 1.6539*10^-21;
          u[0] = 0.;
          u[1] = 0.1;

          A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
          -48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
          r - s - 24*e*s^-1, r < s];

          u[i_] := u[i] = x /. FindRoot[
          u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

          Array[u, 100]



          0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
          0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
          1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
          0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
          0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
          0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
          0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
          0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
          0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
          0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
          0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
          0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
          0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
          0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
          0.554408, 0.56675




          (takes about 5 seconds)



          Alternatively, use



          Table[u[i], i, 1, 100]


          (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






          share|improve this answer











          $endgroup$



          I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



          s = 0.3405;
          e = 1.6539*10^-21;
          u[0] = 0.;
          u[1] = 0.1;

          A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
          -48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
          r - s - 24*e*s^-1, r < s];

          u[i_] := u[i] = x /. FindRoot[
          u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

          Array[u, 100]



          0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
          0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
          1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
          0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
          0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
          0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
          0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
          0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
          0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
          0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
          0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
          0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
          0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
          0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
          0.554408, 0.56675




          (takes about 5 seconds)



          Alternatively, use



          Table[u[i], i, 1, 100]


          (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 1 hour ago

























          answered 1 hour ago









          RomanRoman

          5,12011130




          5,12011130











          • $begingroup$
            thank you very much. I really appreciate it.
            $endgroup$
            – morapi
            4 mins ago
















          • $begingroup$
            thank you very much. I really appreciate it.
            $endgroup$
            – morapi
            4 mins ago















          $begingroup$
          thank you very much. I really appreciate it.
          $endgroup$
          – morapi
          4 mins ago




          $begingroup$
          thank you very much. I really appreciate it.
          $endgroup$
          – morapi
          4 mins ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematica Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195054%2fwhy-is-this-code-so-slow%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Dapidodigma demeter Subspecies | Notae | Tabula navigationisDapidodigmaAfrotropical Butterflies: Lycaenidae - Subtribe IolainaAmplifica

          Constantinus Vanšenkin Nexus externi | Tabula navigationisБольшая российская энциклопедияAmplifica

          Gaius Norbanus Flaccus (consul 38 a.C.n.) Index De gente | De cursu honorum | Notae | Fontes | Si vis plura legere | Tabula navigationisHic legere potes